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ABSTRACT

COMPUTER AIDED ENGINEERING TOOLS FOR 
STRUCTURED MODELING OF MECHATRONIC SYSTEMS

By

Michael Keith Hales

Industry is continually faced with pressures to develop improved products while 

decreasing design-cycle times. Complex designs o f  mechatronic systems, which 

incorporate modeling elements from multiple engineering domains and embedded control 

subsystems, can be particularly challenging. Computer Aided Engineering tools, such as 

mathematical modeling, have proven useful because they allow engineers to consider 

more design alternatives in shorter amounts o f time. As part o f the mathematical 

modeling effort, considerable resources can be dedicated to creating a new model for a 

particular purpose. Tools that help ease the burden o f new model development and 

directly support mechatronic modeling are therefore o f particular importance.

Structured, reusable mathematical models o f  common engineering components 

help to simplify the initial modeling task, to capture engineering knowledge for use in 

future projects, and to support group model development efforts. Many difficult issues 

are associated with implementing a structured modeling approach. A structured 

modeling framework that can accurately and simply represent systems o f interest is 

needed. A flexible modeling environment for modifying model properties, while 

ensuring that models are not altered in ways that are inconsistent with the original design
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intent should be developed. When many models have been defined and collected in a 

library, methods for efficiently locating models that are useful for a particular purpose 

become increasingly important. The desire to share models among various groups raises 

the issue o f model security.

Research was conducted to investigate ways to address the above issues. As a 

result o f  this effort, a new modeling construct, the Multiport Template, was defined. The 

Multiport Template simplifies the creation o f flexible, reusable models o f mechatronic 

components and systems, helps ensure consistent model modification, leads to a natural, 

meaningful classification and ordering o f models, and supports multiple library searching 

methods. Additional data constructs, used in conjunction with the Multiport Template, 

provide control o f access to various model properties by different types o f users.

The usefulness o f  the Multiport Template design was demonstrated by 

implementation of a particular modeling environment. Examples are presented that 

demonstrate how the modeling tools developed allow for completion o f tasks that were 

not previously possible.
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CHAPTER 1 
INTRODUCTION

1.1 Background

Engineers have come to rely on computers to complete an increasing number of 

tasks. During the course o f a day, it would not be unusual for an engineer to use a 

computer to perform a numerical analysis, communicate with a colleague through email, 

search the Internet for crucial engineering data, and work on a technical document. 

However, despite the many ways in which computers can enhance the engineering effort, 

it is somewhat astonishing to note that there is a tremendous gap between the way 

computers fundamentally operate (the binary state o f a set o f electrical switches) and the 

way humans naturally think (spatial relationships, physical images, abstract reasoning, 

etc.). Computers are useful because o f efforts to bridge this gap. What are some of the 

ways in which computers are made more useful? An answer to this question can lead to 

directions o f future efforts to further increase the usefulness o f computers.

Initially, computers became more useful by teaching humans to think like 

computers. This result involved humans learning rather cryptic computer languages, like 

Assembly, to perform low-level tasks, such as "moving" and "pushing" variable values 

around in computer memory. This demanding approach requires large amounts of time 

from highly skilled individuals (computer programmers). Even simple tasks can involve 

complex instructions to the computer.

1
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Another way computers can become more useful is to "teach" computers to think 

more like humans (Dertouzos, 1997). An early advancement in this area was the 

development o f the FORTRAN computer language (ANSI, 1966). FORTRAN improves 

the way humans communicate with computers in several ways. One improvement comes 

from the definition o f data structures that support commonly used ideas and concepts. 

For example, FORTRAN supports many different variables types, such as character 

strings, integers, and complex numbers. Another improvement is in the specification o f a 

more "human-like", natural syntax for instructing the computer to complete common 

computer tasks. This feature is helpful because it reduces programming efforts and 

makes it easier to remember commands. Another improvement comes from an 

organization o f data into meaningful groupings. For example, code for performing a 

common task can be grouped in a subroutine. This ability helps to simplify computer 

instructions and also makes it possible to reuse a given set of instructions in multiple 

contexts.

Two observations of the above discussion are important to consider. The first 

observation is that the existence o f  FORTRAN does not change the fundamental 

computing ability o f computers. Put another way, any set o f computer instructions 

written in FORTRAN could also be written in Assembly. If  this statement is true, then 

what is the added value o f creating improved data structures, syntax, and organization? 

The second observation addresses this question: the benefit is that the way computers are 

instructed to perform a given task is brought into closer conformity with the way humans

2
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reason about performing that task. This benefit results in a decreased investment o f time 

and greatly improves productivity.

The trend to simplify the way computers are instructed has continued. Object- 

oriented programming languages like C++ (ISO, 1998) have been developed. These 

languages have data structures, syntax, and an organization that more naturally reflect the 

ways humans reason about the world (Pressman, 1992). Computer operating systems 

have evolved from text based, command-line driven tools to graphical, mouse-driven 

interfaces. Fewer people use computer languages directly. Instead, computer 

programmers use the computer languages to create computer software to perform specific 

tasks. Tasks that are cumbersome to complete using a computer language are almost 

trivially performed using a computer program. For example, using FORTRAN to 

generate a finite element mesh for a complex, 3-dimensional object, is a formidable 

undertaking. However, programs like ANSYS (Swanson Analysis Systems, Inc., 1998) 

can be used to perform this task at the click of a button. For each o f these advancements, 

the above observations apply, i.e., communication with computers is simplified, but 

fundamental computing power is not increased.

Computer software, therefore, can enhance the engineering effort by bringing the 

performance o f the computer more in line with human thought and by reducing the 

computer-specific knowledge that is required to solve engineering problems. The general 

area in engineering that uses computer tools for this purpose is often referred to as 

Computer Aided Engineering (CAE). The general purpose o f this dissertation is to

3
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explore ways in which to enhance engineering efforts through improved CAE tools. The 

approach followed is similar to the trend previously outlined. Enhancements will be 

sought by searching for ways in which new data structures, problem representations, and 

information organization can be exploited.

1.2 Area of Research and Scope

CAE covers a broad class of tools for many different engineering applications. 

The research described in this document will focus on computer support for one area of 

increasing engineering interest, the dynamic behavior o f mechatronic systems. As 

opposed to a static response, a dynamic response is one in which relevant system 

parameters significantly evolve over a time period of interest (Umez-Eronini, 1999). 

Whether a system is considered dynamic or not is a subjective decision and depends on 

engineering judgement and operating conditions (Stein and Rosenberg, 1991). For 

example, an automobile's rack-and-pinion steering system may be treated as a static 

system when evaluating its response under freeway driving conditions, but it may be 

considered a dynamic system when evaluating its response during a high-speed race.

Mechatronics is a relatively new term with somewhat varying definitions 

(Auslander, 1996; Comerford, 1994; Buur, 1992); however, common ideas have 

emerged. In this dissertation, a mechatronic system will be defined as one that has two 

general features:

4
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1) it is composed o f components from multiple engineering domains, such as 

mechanical, electrical, hydraulic, acoustic, thermal, and magnetic; and

2) it has integrated automatic control subsystems as an inherent part o f its design.

There are many areas in which computers can support an investigation into the 

dynamic response o f a mechatronic system. One area is system representation. Initially, 

a model of a system to be investigated must be constructed. The model could take one of 

many forms, including a set o f mathematical equations, a qualitative description of how 

the system behaves, or a physical description o f the model's properties. Another area is 

system transformation. For example, at some point a model must be transformed into a 

representation that is suitable for numerical simulation. The numerical simulation itself 

is another area. There are many algorithms for performing numerical simulations, and a 

variety o f strategies for selecting a suitable algorithm.

The research described in this document deals primarily with creating and 

working with model representations. These issues related to these topics are addressed 

in more specific detail in the next section.

1.3 Research Issues

Mathematical modeling o f mechatronic systems and the corresponding computer 

tools that support it generally have been successful in supporting mechatronic system 

design. "Virtual prototyping" can decrease the need for physical prototyping and thus 

reduce design cycle time and design development costs. However, there are constant

5
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pressures in industry to further decrease design cycle times, reduce development costs, 

and consider increasingly complex designs. Also, the large resource investments, in 

terms of time and money, that are used to create models for a specific modeling purposes 

are, unfortunately, not always available to use in future efforts. These observations 

indicate a need for improved modeling tools that make the model building process as 

easy and efficient as possible and support model reuse. In general terms, an improvement 

in computer tools can improve productivity (Gibbs, 1997). An improved modeling 

environment that decreases the modeling effort benefits both industry and academia. 

Simplified modeling tools reduce the learning overhead and allow those using the tools to 

focus on more relevant modeling issues.

Another issue in mechatronic systems modeling is the inherent multidisciplinary 

nature o f mechatronic systems. One class o f  modeling software is based on fixed 

input/output information flow, a subset o f which is block diagrams. Simulink 

(MathWorks, 1999), SystemBuild (Integrated Systems, Inc., 1994), and Easy5 (Boeing, 

1998) are typical examples. These types o f software are widely used in both academia 

and industry. However, Otter and Cellier (1996) discuss why these modeling constructs, 

while quite useful for controller design, are not the best-suited tools for modeling 

physical systems, despite assertions to the contrary (Fritchman and Hammond, 1993; 

MathWorks, 1998). One reason supporting this assertion is that the fixed input/output 

nature o f block diagrams deters model reuse, since a component model's input/output 

structure may depend on its use in a particular system. This weakness can be especially 

troubling in a large, hierarchical model. Another reason is that the representation of

6
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component models can be confusing since interactions are limited only to signals. A 

third reason is that there are no general tools for working with transducer components. 

Cellier (1992a) indicates that a more appropriate modeling approach would include 

power-based interactions, enabling descriptions of physical components that are much 

closer to reality. The use o f power-based interactions also helps a modeler to avoid some 

common modeling errors by enforcing conservation of energy laws.

Due to these reasons specified above, modeling data structures intended to 

support mechatronic systems modeling should support both data and power flows. Some 

examples of previously defined tools that are specifically designed for systems composed 

o f components from multiple power domains are bond graphs (Kamopp, et. al, 1991), 

object diagrams (Otter, 1997), SIDOPS+ (Bruenese and Broenink, 1997), and Modelica 

(Mattson and Elmqvist, 1998). These tools are finding increased attention and 

acceptance as is evidenced by computer software that is based on these tools, such as 

ENPOR.T (Rosencode Associates, Inc., 1995), 20Sim (Controllab Product, 1998), 

Dymola (Dynasim, 1999), and AMESim (IMAGINE, 1996).

Another modeling issue involves the support provided for model reuse. Currently, 

many modeling environments support component model reuse by supplying a set of pre

defined model types, contained in a fixed library. A weakness o f pre-defined model 

types arises when one wishes to modify certain properties of a component based on that 

type. The ways in which a model's properties are modified can be quite limited. Often 

the only properties that can be changed are the model's connectivity and parameter

7
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values. If a pre-defined model that precisely matches the current needs cannot be found, 

then a new model must be generated from scratch. A good modeling environment should 

support increased editing capabilities o f library components.

In another effort to support model reuse, a modeling environment may provide 

support for a specialized model definition, referred to here as User-Defined Model Types 

(UDMTs). This approach allows a user to define a new model type, in a way similar to a 

modeling environment supplying pre-defined types. In many cases, UDMTs are defined 

using a fixed-form, programmatically specified data structure. These types o f  tools 

require knowledge o f  highly-specialized data constructs and can be quite complex. Also, 

once a new UDMT is created, it can suffer from the same problems associated with pre

defined model components, namely that modification of model properties is limited and 

organization and browsing tools have limited support. On the other hand, some modeling 

environments allow for essentially unlimited modification o f modeling components that 

are based on UDMTs. This feature provides increased flexibility to modify an existing 

model in a library to meet a new need, but it doesn't prohibit the model from being 

altered in ways that are inconsistent with its original design.

Engineering model libraries may come to include a large number o f models, each 

designed for a very specific purpose. As the number o f pre-defined modeling types in the 

library grows, searching through the library contents to find a useful model for a current 

modeling purpose becomes increasingly difficult. To address this issue, a design

8
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environment should support simplified, efficient tools for organizing and browsing the 

contents of a component model library.

A final modeling issue considered in this research involves the problems 

associated with sharing component models that contain data requiring restricted access. 

Such a situation can arise when two companies must share model information to 

accomplish a systems design. Some information included in the model may be 

proprietary to one o f the companies. This situation can also arise in an academic setting 

when an instructor prepares a model for student investigation. Perhaps students should 

have the ability to use the model to determine its behavior, but not to view its properties. 

A simple approach to controlling the access to a model's properties is to "lock up" the 

entire model. This approach might be accomplished using file access control properties 

supplied with some operating systems. However, such an approach can lead to a design 

that is far from optimal, since the control of access to the model details is limited to the 

model as a whole. Therefore tools should be provided that allow an owner o f a model to 

make available to a model user some o f the model details, according to the user's 

classification. Such a feature allows for varying levels of security regarding both reading 

and modifying model details.

1.4 Research Objectives

The principal objective o f this research is to design data structures, formulate new 

concepts, and organize existing information that results in significant enhancements to 

modeling environments for mechatronic systems. This design addresses the issues

9
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discussed in the previous section. Specifically, the work will be divided into three areas 

relating to modeling o f  mechatronic components and systems:

1) creating and correctly modifying models and model types of mechatronic 

components and systems,

2) organizing and browsing the contents of a library o f mechatronic model types, 

and

3) controlling the access to details o f models o f mechatronic components and 

systems.

Another objective o f this research is to demonstrate the efficacy o f the design 

through a computer implementation. The implementation shows that the issues raised in 

the previous section are addressed, and that the proposed design improves modeling 

environments for mechatronic systems.

1.5 Dissertation Organization

The remainder o f this dissertation is contained in four chapters. Their contents 

are described briefly in this section.

Issues related to the design of modeling environment for mechatronic systems and 

components are covered in CHAPTER 2. A general purpose modeling structure for 

supporting modeling o f mechatronic systems and components is defined. This data 

structure is called a General Multiport. Using this data structure, a novel, template-based 

approach for creating User-Defined Model Types is presented. It is shown how the tools

10
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improve the way in which UDMTs are used and defined. The benefits also extend to 

providing enhanced methods for classifying and browsing the contents of a set of 

UDMTs stored in a library. A modeling environment implementation for mechatronic 

systems that is based on these ideas is presented in CHAPTER 3.

In CHAPTER 4 a design is presented which supports the control of access to 

various model properties o f mechatronic components and systems. An implementation of 

the design is presented and its usefulness is illustrated with two examples.

A summary and conclusions are given in CHAPTER 5 along with a set of 

recommendations for future research in this area. The appendix gives a brief description 

of the implementation o f the modeling environment. This document concludes with a list 

of references that were useful in carrying out this research.

11
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CHAPTER 2 
DESIGN OF A MODELING ENVIRONMENT

2.1 Introduction

As was discussed in CHAPTER I, there is a need for enhanced modeling tools 

that decrease the burden o f creating models of mechatronic systems. One strategy that 

has been successfully employed in the past is the use o f  a modeling structure that will be 

referred to as a User-Defined M odel Type (UDMT). To understand what a UDMT is, it is 

helpful to first consider the more common modeling structure, a Pre-DefinedM odel Type 

(PDMT). PDMTs are basic modeling components that are specific to a modeling 

environment. Their fundamental definition cannot be changed; only particular attributes 

can be changed. As an example, consider a modeling environment that provides a pre

defined model o f a common component, a scalar Gain Block. To use a Gain Block 

model in a system, the user creates a model instance, as shown in Figure I. The only 

modifications that can be made to the instance are how it is connected in the system and 

the value o f its gain parameter. This behavior, or what makes the Gain Block "act" like a 

Gain Block, is intrinsically defined as part of the modeling environment and cannot be 

changed; the Gain Block definition is fixed.

12
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y

Figure I. A Scalar Gain Block.

The use o f PDMTs has been useful in the support o f mechatronic systems 

modeling. In some environments, there is no other option for building a system model 

than to use the PDMTs that are supplied with the environment. In these cases, the 

flexibility and customizability o f the environment is limited. No new modeling types can 

be defined without a re-definition of the environment. In response to this issue, some 

modeling environments provide a more general modeling structure that allows a user to 

not only create model instances, but to also create User-Defined Model Types.

It can be confusing to understand some o f the issues regarding UDMTs. One 

reason for this difficulty is that when dealing with model types, a more abstract way of 

thinking is required. Therefore, before proceeding, it is important that the fundamental 

distinction between model types and model instances be clearly understood. One way to 

describe the fundamental difference is as follows: model instances describe the

properties of physical systems and model types describe the properties o f model 

instances. Stated another way, model instances are based on model types. A simple 

example will help to demonstrate this point. Figure 2 shows three different areas that 

may be of concern when creating a system model: (a) the physical system being studied,

13
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(b) a system model, and (c) a set o f model types. The model in (b) is a representation of 

the system shown in (a). It is composed o f a set of component model instances. The 

intent o f the system model is to describe relevant behavior o f the physical system. There 

is a direct relationship between the model instances and the component or property o f the 

physical system which they represent.

mm•  •

Spring

Ground

Dashpot

Rigid
Connector

Mass

(a) Physical System (b) System Model (c) Model Types

Figure 2. Three Areas Related to Modeling.

In a similar relationship, the model types in (c) are general descriptions o f the 

component models specified in (b). The intent o f a model type is to describe the behavior 

o f its corresponding modeling instance. A single model type description is related to 

multiple model instances. For example, there are two spring models, but only one spring 

type. Each instance o f the spring model maintains some data that is unique (e.g. the

14
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stiffness value). The spring type maintains data that is common among all spring 

instances (e.g. the fact that there are only two connection points).

2.1.1 Design Considerations for a Modeling Environment

It is desirable for a modeling environment to support User-Defined Model Types 

(UDMTs) for storage in a model library. UDMTs provide a means to customize the 

modeling environment with the models that are most useful. Model generation time is 

decreased because, instead of starting from scratch each time a new system is to be 

modeled, an engineer can browse a library of existing UDMTs for ones that most closely 

meet current needs. UDMTs also serve as a repository o f modeling knowledge; efforts 

and knowledge used to solve previous problems become resources available for solving 

future problems.

There are many difficult issues related to using and developing UDMTs. A good 

definition o f a UDMT allows for sufficient detail to capture desired behavior while being 

flexible enough to allow for future modification, thus providing specialization for a 

particular purpose. The amount o f flexibility in modifying properties a user should have 

when working with an instance o f  a UDMT is not universally agreed upon. Current 

implementations tend to fall at one of two ends o f a spectrum. At one end, allowed 

modifications are quite limited. In many environments the only allowed modification is 

the setting of parameter values; meanwhile the underlying equations remain invariant. 

This scheme helps to ensure that a UDMT instance won't be modified in ways 

inconsistent with its intended use. However, it severely restricts the useful forms that it

15
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can take. Since a model is an approximation o f  reality, there are generally many possible 

forms any given model may take. It therefore becomes necessary to store multiple, 

closely-related model forms of any given component model.

At the other end o f  the spectrum, modifications o f the properties o f a UDMT 

instance are relatively unlimited. This philosophy gives more flexibility when using a 

UDMT, usually at considerable effort in defining a new instance. In addition, it may 

mean that models can be changed in ways that are inconsistent with original intentions. 

Figure 3 illustrates how this philosophy can lead to an improperly modified model. A 

default bond graph, I-Port C-Type is shown in part (a). Since the general form of a bond 

graph C-Type allows multiple equation forms, these equations should be accessible to the 

user. However, the lack of constraints on how these equations can be modified can lead 

to an improper modification, as shown in Figure 3(b) where the function relationship e = 

f«C is more appropriate for a purely energy dissipating component, like a bond graph R- 

Type (Kamopp, et. al., 1990).

e
f

q = f f dt
c = q/C

q = J f dt 
e = f • C

(a) Default (b) Improperly 
Modified

Figure 3. Improperly Modified Bond Graph, t-Port, C-Type.
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Another difficult issue in working with UDMTs arises when one wants to create a 

new UDMT. This task generally involves learning a specialized modeling language or 

set o f function calls. Also, it is often necessary to start with a "blank slate" every time a 

new UDMT is needed, even if the new model type is only slightly different from an 

existing one.

A third issue involves the classification o f UDMTs. When a large number of 

UDMTs have been defined, a clear and convenient ordering and a method for finding a 

model with desirable characteristics are imperative. Most commonly, model 

classification tools are limited to grouping model types according to model purpose or 

functionality. While this method can be effective, it has two weaknesses. The first 

weakness is that the location of a particular model type is a somewhat subjective 

decision. Two people may desire to place a given model in two different groups. The 

second weakness is that the method relies on models being assigned to "correct" groups. 

If a model is placed in an improper location, it could be hard to find, or worse, give an 

incorrect impression of the model's purpose.

2.1.2 Previous Work

The concept o f using UDMTs to extend a modeling environment has been 

exploited previously by others, although the ideas have not been expressed in the fashion 

presented here. This section presents the conceptual ideas that have been explored by 

others in relation to this work. A more specific description o f implementation details of 

some other groups is given in section 3.1.1.

17
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Previous implementations o f UDMTs specify a set o f model properties. Instances 

based on a UDMT initially have the same attributes as specified by the UDMT definition. 

The type and manner o f modifications that can be made to model instances are fixed; i.e., 

they are part of the UDMT definition. For example, in the Simulink modeling 

environment (MathWorks, 1999) model instances created from UDMT definitions only 

allow for modification o f model parameter values. There is no way to extend the 

environment's ability to modify equations or to specify the way the parameters values are 

set. In the modeling environment 20Sim (Controllab Products, 1999) additional 

properties o f a model instance can be modified (e.g., the model's equations), but which 

properties can and cannot be modified is not controlled by the creator of the UDMT, but 

is a function o f the modeling environment.

Using a UDMT definition to prescribe the manner in which properties o f a model 

can be modified has been suggested.. However, current thinking is limited. Thus far the 

only application has been to specify valid ranges o f parameter and variable values, as in 

the SEDOPS+ modeling language definition (Bruenese, 1996). Extension to other model 

properties has not been previously explored.

Vries et. al. (1994, 1993) have explored methods for structuring of a set o f model 

types. In their work they divide the properties o f a UDMT into two categories, the type 

specification or type interface and the implementation. Properties that are classified in 

the type category are inherited when a new UDMT is derived from an existing one.

18
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Implementation properties are not inherited. This strategy allows for an ordering of a set 

o f UDMTs in a "class" or type structure. A similar approach is taken in the Modelica 

modeling language (Modelica, 1999; Mattson, et. al., 1998). However, this manner of 

inheriting properties is limited in that once a set o f properties has been specified as part of 

the type interface, then all derived models have the same type interface. In Simulink 

there is no notion o f structuring a set of models. Each UDMT is a unique entity with no 

relationship to any other UDMT.

2.1.3 Approach

To address the issues raised above, a new environment for describing User- 

Defined Model Types o f mechatronic components was designed. This design improves 

the ways in which UDMTs are defined, created, and classified. This goal is 

accomplished with a new modeling structure, the Multiport Template. A Multiport 

Template is a combination o f three items:

1) a modeling structure called a General Multiport,

2) constraints that specify the range o f properties that the UDMT can have and that 

bound the values the properties can assume, and

3) default property values.

A Multiport Template (hereafter referred to as a Template) is used as the basis for 

creating instances o f component models, prescribes the way an instance's properties can 

modified, serves as a basis for deriving new Templates, and provides a mechanism for 

classifying Types based on functionality.
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Section 2.2 describes the properties o f a General Multiport. The Template design 

is given in Section 2.3. The usefulness and effectiveness o f the design is demonstrated 

by two examples in Section 2.4.

2.2 Definition of a General Multiport

The definition of a fundamental modeling construct developed as part of this 

research is presented in this section. The data structure, called a General Multiport, 

establishes the range of models that can be defined by any instance o f a Template. While 

this definition provides a foundation for building models that represent many types of 

dynamic systems, it is not meant to be all-inclusive. Also, many o f  these ideas have been 

studied and expressed in various formats by others. For example, power-based modeling 

ideas in the form of bond graphs were initially introduced by Paynter (1961) and later 

further explored and defined others (Breedveld, 1985; Cellier, 1991, Kamopp, et. al. 

1991). Other general purpose, power-based modeling constructs have been defined that 

attempt to further expand the functionality o f these tools (Rosenberg, et. al, 1996; Otter 

and Cellier, 1997; Elmqvist, et. al., 1998). Concepts related to hierarchical model 

representations have also been explored (Cellier, 1992b; Hales, 1995). However, the 

design presented here has additional features not previously considered. For example, no 

references have been found to indicate work done on specifying properties of a modeling 

structure that would ensure correct UDMT reuse and to allow for model classification 

schemes based on functionality.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

It is convenient to divide the definition o f the General Multiport into four 

categories. The Topological Properties are described in Section 2.2.1. Parametric 

properties are discussed in Section 2.2.2. Functional properties are presented in 

Section2.2.3. Display properties are described in Section 2.2.4.

2.2.1 Topological Properties

The fundamental modeling entity in this system is referred to as a Component. 

Figure 4 shows a representation o f a General Multiport Component, illustrating many o f  

its properties that will be elaborated on in this and subsequent subsections. A Component 

can represent a physical object, like a shock absorber, or an effect, like mechanical 

friction. Components are classified as either open, meaning that they can be connected to 

other Components, or closed, meaning that they cannot be connected to other 

Components. A closed Component is given the special designator o f System.

Ports are directly associated with Components. A Port indicates a site for 

connection between Components. Ports can be physically meaningful, like a shaft on a 

flywheel, or functional, like an input signal to a transfer function. Open Components 

have one or more Ports; closed Components have no Ports. A pair o f Ports is associated 

by a Connector, thus connecting the two associated Components.

21
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Signal
Ports Component

Power
Ports

Parameters:
e t, f i

Figure 4. A General Multiport.

2.2.2 Parametric Properties

It is often useful to define a set o f Parameters for modeling convenience. 

Parameters may point to physically meaningful attributes, such as material properties or 

geometric dimensions. It is also useful to define common symbolic constants, such n. In 

this definition a Parameter's value does not change during the course o f a simulation, 

although it may be changed between simulation runs. Although Parameters are 

ultimately used in Equations, that relationship is not important at this level. This 

distinction is meaningful because System Components, which have no Equations, may 

have a set o f Parameters.

A Parameter can be associated with a Multiport in several different ways, 

depending on its intended use. A Parameter associated with a System is considered 

"global" and is accessible to any Component that is contained in the System. The density 

o f hydraulic fluid is an example o f a System Parameter. On occasion it is desirable to 

have a Parameter that is only accessible to a subset of a model's Components. In this 

case, a Parameter should be associated with a Subsystem Component. When a Parameter
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should only be accessible to a single Component, then the Parameter should be associated 

with a Core Component.

2.2.3 Functional Properties

There are several aspects to the functional properties o f a General Multiport. Port 

Variables, Internal Variables, and Equations are described in this section.

2.2.3.1 Port Variables

The Ports on a Component also serve a functional purpose. Ports have one or 

more Port Variables directly associated with them. Port Variables are dynamic; that is, 

they are functions o f time.

Ports have one of two directions: In (towards the Component) or Out (away from 

the Component). The interpretation o f the Port direction depends on the Port Type. A 

Port's Type classification is based on its Port Variables. A single Component can have 

multiple Ports o f any Port Type associated with it. Currently, two Port Types have been 

defined, which will be discussed below.

A Signal Port Type has exactly one Port Variable. If  the Port is directed In, then 

the Variable is a functional input; otherwise, it is a functional output. For example, a 

Block Diagram Sum Block has one or more In Ports and exactly one Out Port.

23
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A Power Port Type has two Port Variables associated with it. The product o f  a 

Power Port's Variables represents a power flow. For example, a shaft Port's Variables are 

torque and angular velocity. The direction o f a Power Port shows the positive direction 

of energy transfer.

One o f a Power Port's Variables is used as a functional input and the other as a 

functional output. Which Port Variable is used as the input and which Variable is used as 

the output at a Power Port depends on the Port's Causality. Causality may be "fixed" or it 

may be dependent on the system assembly. For example, a model of an electric battery 

might have one Port with fixed Causality specifying the voltage is always a functional 

output. On the other hand, the Power Port o f a model o f an electrical resistor could have 

either voltage or current as a functional output, depending on how it is connected in a 

system model.

Additional Port Types and properties have previously been defined and studied 

and will not be elaborated upon here (Breunese, 1996; van Dijk, 1994). However, this 

design does not preclude future definition o f other Port Types and properties.

For two Ports to be connected, they must at least have the same Type and 

complementary directions; i.e., one Port must be In and the other Out. A Port connection 

indicates that the corresponding Port Variables are directly coupled. The functional role 

of the Port Variables must also be complementary; i.e., Variables used as functional 

inputs on one Port must be functional outputs of the other Port.
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2.2.3.2 Internal Variables

Internal Variables are Variables that are defined locally to a Component. As the 

name implies, the values associated with Internal Variables are not accessible to other 

Components, and their values can change over time. They are primarily used for 

convenience. For example, an intermediate computation may be assigned to an Internal 

Variable.

2.2.3.3 Equations

Equations are mathematical expressions consisting of Constants, Parameters, Port 

Variables and Internal Variables. Equations may be expressed in traditional 

mathematical form (e.g., algebraic and differential) or expressed as logic statements and 

procedures (e.g., if-then statements and loops).

Components come in two varieties, Subsystem  and Core, as illustrated in Figure 5. 

Core Components are open, are directly associated with Equations, and are structurally 

irreducible. Subsystem Components are open and have a connected assembly of other 

Components, supporting hierarchical model descriptions. Subsystem Components have 

implied equations, derivable from their contained Core Components. Whether a 

Component is created as a Subsystem or a Core depends on modeling judgement. For 

example, a model o f  a DC motor could be represented either by an assembly o f 

Components such as a resistor, inductor, inertia, etc., or by a stack o f Equations.
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Core Subsystem

Equations «

Figure 5. Two Types of Multiport Components.

An important characteristic of mathematical equations in this system is that they 

are in symbolic form. This feature is important for supporting reusable models (Cellier 

and Elmqvist, 1993). One reason this statement is true is that, using the connection 

scheme defined above, symbolic equations are required to accommodate Components 

that have system-dependent causality. That is, an equation may need to be inverted so 

that the functional output variable is explicitly calculated. For other connection schemes, 

it is possible to avoid equation reformulation, as was demonstrated by Byam (1999).

The data structure defined here makes it possible to specify an equation as having 

a fixed input/output form. An additional restriction on equations is that the output Port 

Variables must be computable for any legal causal configuration.

2.2.4 Display Properties

A Multiport's display properties include Icon, Name, and Keywords. These 

properties serve as mnemonics to quickly and conveniently locate, refer to, and classify 

models. It is important that the ideas implied by a model's display properties are
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consistent with its actual definition. For example, a model named "Spring" with an Icon 

that looks like a spring should have other properties (Ports, Equations, Variables,...) that 

are consistently defined. Or, if the keyword "linear" is associated with a model, then the 

Equations should indeed be linear. Consistency between the Display and other model 

properties is important because the Display is often heavily relied upon when one is 

trying to understand or to explain the purpose of a model.

A good implementation that relies on display properties can be useful when 

browsing or searching the contents o f a large library. For example, if models with similar 

purposes are grouped according to Keywords, then finding a model for a particular 

purpose at hand can be greatly simplified (Bruenese et. al., 1998, OLMECO, 1991). 

Finally, the Icon serves a practical role in a Graphical User Interface (GUI) for 

identifying, manipulating, and editing a model's properties.

2.3 Templates

Now that a useful modeling structure has been defined, how this information is 

used when working with User-Defined Model Types will be discussed. There are two 

general ways to work with a UDMT, depending on the task at hand: I) creating instances 

and using them to build a model, and 2) defining and classifying new UDMTs. This 

section will discuss these two activities and describe the role o f Templates.
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2.3.1 Working With Instances and Templates

Figure 6 shows the relationship between an Instance based on a Template, a 

Template, and a User. A model is composed o f an assembly o f  Instances. An Instance is 

a unique modeling object that is a realization o f a configuration of some o f the properties 

o f the General Multiport. An Instance is created for a specific modeling purpose, such as 

for modeling a specific pump. Initially the attributes o f  the Instance are solely derived 

from the Template. User input is then used to specialize the properties o f  the Instance, 

such as specifying the pump displacement constant. Multiple Instances can be created 

from a single Template and each Instance maintains its own attribute data.

Type
Interface

Tune

View

Modify
User

New
Template

Denve Existing
Template

Figure 6. Working with an Instance and Template.

Interactions with an instance can be classified into two categories, viewing and 

modifying. It is significant that there are some properties o f an Instance that can be 

examined by the user, but not modified. Also there are limits on how some properties 

can be modified. The mechanism for moderating modification of property values is the 

Instance Interface. All interactions between a User and an Instance must occur through 

this interface.
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The key element in this arrangement is the Template. A Template is used to 

create Instances and specify how Instances can be modified. A Template accomplishes 

the goal by coordinating three sets o f data.

(1) The General M ultiport Definition. All Templates are based on this definition, which 

bounds the range o f models that can be defined using a Template.

(2) Constraints. A Template lists a set of Constraints that are used to specify which 

properties o f the General Multiport can be assumed by an Instance and limits the 

values that properties may assume. Stated another way, Constraints are used to 

further bound the properties that an Instance may assume. If a Template did not 

contain any Constraints, then it would be possible to define an Instance using any 

configuration defined by the General Multiport.

(3) Default Property Values. A Template defines a default configuration of model 

properties for an Instance.

The unique feature in this design is the use of Constraints to specify a UDMTs 

properties. This method is different from other implementations of UDMTs, which only 

specify a set o f properties. Constraint data is used to modify the behavior o f  the Interface 

Editor. When editing the properties o f an Instance, the Editor is "tuned" according to the 

specified Constraints listed in the Template. In this way it becomes possible to create 

User-Defined Model Types that are edited correctly by all users o f the model.
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A brief example will help to illustrate these ideas. Consider again the I-Port C- 

Component shown in Figure 3 and the three aspects o f  a Template discussed above that 

would be needed to define this Model Type.

General M ultiport Definition

The constructs o f  the General Multiport Definition described in Section 2.2 are 

sufficient to support the definition of a 1-Port C-Component.

Constraints

The following statements prescribe the way instances of the C-Component can be 

modified:

• The C-Component must have exactly one Power Port. That is, no other Port Types 

are allowed, the default Port cannot be deleted, and no other Power Ports can be 

added.

• The state Equation (first Equation) is fixed. That is, the user cannot modify it.

• The constitutive Equation (second Equation) has the fixed form e-tf^q  p). That is, it 

can only be composed of Variables e and q and Parameters p, with e as an output.

D efault Property Values

The following information specifies a default instance o f the C-Component.

•  A single In Power Port.

• First Equation: q = I f  dt

• Second Equation: e =  q/C.
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Now consider how the Template data is used. An Instance o f the model is created 

using the default property values o f the General Multiport. When a user attempts to 

modify the properties o f the model, the Instance Editor interprets the Constraints and 

enforces them. For example, the Equation editor only allows a user to modify the second 

Equation. In addition, the editor checks if the form o f the Equation defined by the user 

matches the Constraint.

2.3.2 Working with Templates

Figure 7 shows the relationship between an existing Template, a new Template, 

and a User. A new Template is created by derivation from an existing Template. The 

new Template inherits the Constraints and any default properties that have fixed 

Constraints from the existing Template. In this way, a strict parent-child relationship is 

established. Any previously defined Template can be used as a parent. One special 

Template, the General Multiport Template, has no Constraints or default values. An 

instance of the General Multiport Template can be manipulated by a user to have any 

configuration that is supported by the General Multiport definition. The General 

Multiport Template is used as a "seed" for deriving a set o f (child) Templates.
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Figure 7. Working With Templates.

The input from the User in creating a new Template is limited to two types of 

actions. First, a User defines additional Constraints to be applied to an Existing 

Template. Second, default property values can be added and changed, subject to any 

previously defined constraints. The User works directly with the new Template through a 

Type Interface. This interface is tuned to enforce the rule that Constraints can only be 

added to an existing Template and assists the user in adding new Constraints to a new 

Template. This structure simplifies the process o f creating a new Template, especially if 

a good Type Interface has been designed to present the User with the available choices of 

Constraints.

2.3.3 Implications of Inheriting Constraints

Recall that when a Template is created, it is derived from a parent. Derivation in 

this context means that the child Template inherits the parent's Constraints. During the 

creation process additional Constraints are specified, but Constraints specified by the 

parent can not be relaxed.
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Further insight into the implications o f this type o f inheritance can be found by 

considering the influence it has on Template instances. The range o f possible instances 

of a Template model is limited by its Constraints. For the General Multiport, the range of 

possible instances is limited only by its definition, i.e., there are no Constraints associated 

with the General Multiport Template. The range of possible instances o f the General 

Multiport Template is depicted by the outer most oval in Figure 8(a).

When a new Template is derived from a parent and additional constraints are 

specified, as shown in Figure 8(b), then the range o f  possible instances decreases. More 

specifically, the range o f possible instances is a subset o f the range o f possible instances 

o f the parent. This relationship is shown in Figure 8(a). The range o f instances created 

from Template 1 is smaller than the range of instances that can be created by the General 

Multiport Template. If Template I is in turn used as a parent for Template 2, then the 

range of possible instances that can be defined based on Template 2 is a subset o f those 

that could be created using Template 1. Finally, Template 3 is also derived from the 

General Multiport Template, showing that multiple Templates can be derived from a 

single parent.
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Figure 8. Parent-Child Structure o f Templates.

2.3.4 Template Libraries

Many commercially available modeling environments currently provide a large 

number of pre-defined model types for specialized purposes. Models are often organized 

into groups according to similar purpose or power domain. Models are listed in the 

library by a name and/or an icon. Easy5 (Boeing, 1998) has a typical library architecture. 

Several pre-defined groups or models are defined. Each group is referred to as a library. 

Some of the libraries provided by Easy5 are the "Valve and Actuator Design Library", the 

"Electric Drive Library", and the "Aerospace Vehicle Library". When a new UDMT is 

created in this environment, it can be placed in any pre-existing library or in a new library 

specified by the user.

If a large number o f UDMTs have been created and stored in a library, then it can 

be cumbersome to browse through a large, flat list, searching for a model type that is 

useful for a specific application. This observation is especially true if  the set o f models is
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being used by someone other than the originator. Another limitation to this scheme is 

that a given instance o f a model only resides in one library at a time. It may be difficult 

to locate a particular model if it cannot possibly be placed in multiple libraries, especially 

if  the purpose and intended use o f the UDMT must be deciphered from only the name 

and/or icon. Some o f these limitation were addressed by Bruenese, et. al (1998), who 

define a classification scheme that allows for models to have multiple classifications. 

However, another issue that is not addressed involves the fact that the classification 

system is based on subjective reasoning; how a model is classified by one person may not 

match another person's way o f  thinking. Also, if the number o f  models with a given 

classification becomes large, the original problem o f sorting through a large, flat list of 

models remains.

One benefit o f the Template structure is that at least three methods for organizing 

a list o f Templates are possible: by keyword, by constraint, and by generation history. 

These methods help to overcome the problems listed above. A description of these 

methods is given below.

2.3.4.1 Organization By Keyword

Recall that part o f a Template definition includes a set o f keywords. By 

thoughtfully associating a set of keywords with the Templates in a library, a simple yet 

powerful mechanism can be employed for searching through a list o f Templates. To 

begin a search, one or more keywords from a list o f known keywords are specified. 

Next, each Template in the library is examined and its keywords are compared to the
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keywords in the search list. The result o f the search would be to produce a list of all the 

Templates that have the same keywords that are in the search list. The matching criteria 

can be simple, (e.g., any keyword matches any target list entry) or more complex (e.g., 

based on a logical construction of keywords).

This searching scheme allows a set of Templates to be classified in multiple ways, 

not just placed in a single group. It also means that it is possible to find a Template in a 

Library in multiple ways. This result is practically important, since different people 

organize their thinking in different ways.

1.3.4.2 Organization By Constraint

One limitation to using keywords as a searching device is that there is no control 

over which keywords get associated with a Template. This situation has the potential to 

be misleading and frustrating, with searches leading to inappropriate Templates. The 

idea o f using keywords as a filter can then be extended to using the Constraints that are 

associated with the Template. For Constraints that are sufficiently general, it would be 

possible to search a library for Templates that have that Constraint. For example, a 

library could be searched for Templates that have the Constraint that no Power Ports are 

allowed, or for Templates that are constrained to have only Algebraic Equations.

This scheme has many o f the same benefits discussed with the keyword method. 

An additional advantage to this idea is that the Constraints associated with a Template 

directly influence its functionality. This result means that it isn't possible to have a

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

search that produces a poorly matched Template. That is, the Templates found as a result 

of a Constraint search are guaranteed to exhibit the behavior specified by the Constraints. 

Another advantage is that classifying models based on what Constraints are applied to 

them is a natural way to organize one's thinking about a set of models.

One weakness o f this scheme is that the list of Constraints on which to search is 

limited to the types o f Constraints known to the system. Also, the Constraints are strictly 

limited to functionality; abstract classifications that are possible using Keywords are not 

possible. For these reasons, it is useful to support searching both by keywords and by 

Constraints.

2.3.4.3 Organization By Generation History

A third classification scheme takes advantage o f the Parent-Child relationship 

between two Templates (see Figure 7). This relationship sets up a natural ordering of 

Templates in a tree structure instead of in a flat list. Recall that a child Template is a 

specialization o f a parent Template. Browsing is aided by this fact. For example, if a 

candidate model located in a library is too general, then a child Template can be sought 

that specializes the behavior in an appropriate way. Conversely, if a model found in the 

library is too restrictive, the parent model can be considered.

An additional benefit to this classification arises from the fact that the 

classification structure can be patterned after the thinking of the person building it. This 

is possible because the classification structure is not unique. For example, consider the

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

task of initializing an environment with a set o f electrical components that only have 

Power Ports. One way to go about this task is to first define a Parent Template that adds 

the single constraint that all the power ports must be electrical. The next step might be to 

derive a new Template from this Parent Template and add a single Constraint specifying 

that there are no Signal Ports. This path is illustrated in Figure 9(a). An equally valid 

option for obtaining the same results would be first to define a Template with no Signal 

Ports and then to use this Template to derive one that adds the Constraint that all Ports 

are electrical.

Electrical. 
No Signals

General
Multiport

General
Multiport

Electrical No Signals

No Signals. 
Electrical

(a) P ith  I (a) Path 2

Figure 9. Two Paths for Generating a Template.

2.4 Illustrative Examples

Two examples will help to illustrate how the design ideas discussed in this 

chapter are used when working with Templates. The first example demonstrates how a 

Template is used to define and work with an instance. The second example shows how
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new Templates are created based on existing Templates and the natural classification that 

arises.

2.4.1 A Template Definition

A representation o f the information associated with a Template o f a Permanent- 

Magnet DC Motor is shown in Figure 10. The information is divided into the four 

categories that were used to describe a General Multiport in Section 2.2. On the left side, 

default property values are given. Constraints are listed on the right hand side and 

correlate with the properties listed directly to the left.
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Topological Constraints

Component Type 
Core 

Ports 
Electrical Power In 
Rotational Power Out

Fixed.
Fixed Port Number. 
Fixed domain, direction. 
Fixed domain, direction.

Functional Constraints
Port Variables

Electrical: v, / Prefer v as input.
Rotational: r, co Prefer ras input.

Equations Allow ODE and Algebraic.
V = VL +  Vr  +  v m Fixed.
r =  Tm -  T j -  T r Fixed.

3s II e Fixed.
rm = kmi Fixed.

r di
v l = L -

dt
VL =&(7--P) dt

vR = R j V r  = 0- P)

II tr = 0-, (<y, p)
T r  = RmCO T r  = <t>% (a k  p)

Parametric Constraints
Parameters km̂  {kmi. km2*..., kmn}

p = {fcm Re, L, J. R„] Re, nun — Re — Re. max
0 <L< Lmax
J  mm — -I — Jmax.
0 <Rm< Rm.max

Display Constraints
Icon Fixed.

Kev Words '
Two Port, Transducer.... Fixed. 

Name
PMDC Motor Fixed.

Figure 10. A Template of a PMDC Motor.

Note that the topological property o f this Template that specifies the default 

Component Type is "Core". Recall that this attribute means that the Component is 

structurally irreducible and Equations are directly associated with the Component. A
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Constraint on this property specifies that the "Core" designation is Fixed. This Constraint 

indicates that a user can not change an instance's Component Type from Core to 

Subsystem.

The default data also specifies that there are initially two Ports associated with 

this Component: an Electrical Power In and a Rotational Power Out. The Constraint, 

"Fixed Port Number" indicates that the Port number can not change; i.e., no Ports can be 

added or deleted. The power domain and power direction of each Port are also fixed.

The default Equations listed suggest that this model o f a motor nominally 

considers the effects o f the winding resistance and inductance, back emf, and the inertia 

and friction in the motor. Although all the effects are linear by default, some non-linear 

equations are possible.

There are two types o f Constraints on Equations shown in the figure. Some 

Equations are "Fixed", meaning the Equation can not be changed; others have a fixed 

form, meaning the equation can only have the specified variables and parameters and 

must have the specified variable as an output.

There are two types o f Constraints on Parameters shown. The motor constant km 

has a list of allowable values. This Constraint is consistent with the fact that motors are 

often available with discrete values o f motor constants. The other Parameters have an 

allowable range o f  values in the format shown.
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The Constraints are intended to make sure that the basic model effects are 

captured and that the form o f the equations is correct, while still providing flexibility for 

multiple instances. This flexibility means that a broader range o f  model variations is 

possible than if only the parameter values could be changed. For example, the 

mechanical resistance equation model could be changed to model a different type of 

friction model, such as Coulomb.

Recall that Constraints specified in the Template are enforced by the Instance 

interface. For example, limits on parameter values are enforced whenever a user attempts 

to change a parameter value. If the entered value is not within the specified range, the 

user is immediately notified and required to fix the error before continuing. Another way 

that the Instance Editor can enforce Constraints is by never presenting the user with an 

option to perform a task that would violate a Constraint. For example, since the number 

o f Ports is fixed, the user is never given the option to ’’add” or "delete" a Port. Using the 

Constraint information, an instance then "behaves" according to its design.

2.4.2 Creating and Classifying UDMT Templates

When creating a new Template, the starting point is either the General Multiport 

Template or another existing Template. Consider the process o f defining new Templates 

as illustrated in Figure 11.
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Add
Constraints 

__ Cl

C2

C3T2

Tl

T3

y  = p,x, -  pjx.

General
Multiport
Template

Figure 11. Deriving New Templates.

A new Type, T l, is created, based on the General Multiport Template. To 

accomplish this objective, Constraints C 1 are added. The Constraints are as follows: no 

Power Ports, 1 to n  In Signal Ports, 1 to m Out Signal Ports, and Algebraic Equations. 

These Constraints limit the possible models that may be defined using T l as a Template, 

but still allow for a broad class o f models.

A new Type, T2, is created, derived from the existing Type T l. The additional 

Constraints o f exactly one Signal Out and exactly two Signal In Ports mean that models 

based on T2 have less flexibility than models based on T l, but they are more efficient for 

certain tasks.
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Similarly, a new Type T3 is created based on T2. The additional Constraint in 

this case is that the Equations are Linear. This Constraint effectively creates a Weighted 

Sum Block, with the parameters p \ and pz accessible for modification by the user.

Notice that Types T2 and T3 each could have been created directly from the 

General Multiport Template. However, this path would require more effort and input 

from the user than starting with an appropriate parent. It also should be emphasized that 

defining multiple Templates does not increase the range of models that can be defined. 

That range is bound by the General Multiport definition. In fact, if the only Template 

that was available the General Multiport Template, no generality would be lost; i.e., a 

user could create any model supported by the definition. However, each time an instance 

was created, a user would need to make a large number of modeling decisions that would 

eventually result in the desired model description. Instead, using models that have been 

appropriately constrained eases the modeling burden. Applying Constraints to a 

Template is therefore equivalent to a user making modeling decisions. By choosing a 

specific type, some modeling decisions are already being made.

The example above also demonstrates how the derivation of new Templates from 

existing Templates, by applying additional Constraints, leads to a natural classification o f 

a set o f Templates. Each Template is a special case or subset of its parent.
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CHAPTER 3
IMPLEMENTATION OF A MODELING ENVIRONMENT

3.1 Implementation Background

In this chapter an implementation o f a modeling environment for mechatronic 

systems is described. The environment was specifically targeted to support the General 

Multiport modeling construct, the use and creation o f Templates, and use o f  the library 

tools described in CHAPTER 2. A brief synopsis o f the goals o f this design is presented 

here.

•  The Environment will have a simple-to-use, graphically driven interface that is 

congruent with common software that is currently available. Although this goal is not 

a specific research issue, it is nevertheless a significant objective for any practical 

application (Mackulak, et. al., 1994).

• The Environment tools, semantics, organization, and operation will be congruent with 

standard modeling paradigms.

• The fundamental modeling construct will be the General Multiport.

•  In this demonstration environment explicit, ordinary differential equations will be 

supported.

• Every modeling component defined in the system will be a User-Defined Model 

Type, which will be defined using Template concepts.

•  The environment will use Template data to provide tools that ensure that model 

instances are used as intended.

•  The creation o f a new Template will be as simple as possible, only requiring a user to 

fill out a set o f simple forms.
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• New Templates will be derivable from existing Templates. Constraints are 

automatically inherited.

• A classification system is supported that supports library browsing and searching 

tools using keywords, constraints and generation history.

3.1.1 Previous Work

There are several existing software implementations that are used for mechatronic 

systems modeling that also support the definition of UDMTs. In this section, the relevant 

features o f two modeling tools will be discussed. Simulink (MathWorks, 1999) is 

representative o f software that is based on fixed input/out information flow. 20Sim 

(Controllab Products, 1999) is representative o f software based on both information and 

power flow.

3.1.1.1 Simulink

The Simulink environment supports models with fixed input/output information 

flows. There is no support for power flows. UDMTs are implemented using "S- 

Functions". An S-Function is a text file written in the style o f a program subroutine and 

uses one o f three forms: syntax specific to Simulink, FORTRAN, or C. The name of the 

text file is the name of the UDMT. The syntax of an S-Function can be somewhat 

complex and requires knowledge o f a specialized format and Simul ink-defined functions. 

There is no automated software support for creating and editing S-Functions.
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An S-Function definition provides for specification of a fixed number of Signal 

Ports. Each Port has a specific "width", which is the number o f variables associated with 

it. Ports can either have a fixed or variably sized width. The actual number o f variables 

associated with a Port with a variable width is specified when the S-Function is 

connected in a system.

A fixed input/output relationship among the port variables is specified in an S- 

Function using constructs that are common in FORTRAN and C and functions that have 

been defined by the Simulink environment. Once this relationship has been defined then

1) the causal form o f the equation cannot be altered and 2) all instances of the S-Function 

must use that definition; i.e., an instance's equations cannot be modified. However, each 

instance can specify its own set of parameter values.

Simulink has some built in support for organizing a set o f S-Functions. First, a 

set of "libraries" can be created. Each library can contain a set o f S-Functions. A 

particular S-Function is found by manually searching the contents of each library. 

Alternatively, the location of a particular S-Function can be found using the S-Function's 

name and an automated search tool; i.e., if the S-Function name is known, then its model 

can be found.

3.1.1.2 20Sim

The software package 20Sim supports models composed o f both information and 

power flows. All models that are defined by the system are based on the modeling
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language SIDOPS+ (Bruenese and Broenink, 1997). The result is that nearly every 

component model in the system can be considered a UDMT. Comprehensive knowledge 

o f SIDOPS+ is not required to create many types o f component models, but at least some 

knowledge is required for all types o f component models. The software provides some 

automated help in the creating o f  new UDMTs, mainly in the form o f syntax checking.

SIDOPS+ specifications provide for either a fixed number or variable number of 

signal and power ports. Each port has a specific "dimension", indicating the size o f a 

matrix that stores the port's variables.

When specifying the properties o f a SIDOPS+ model, a default relationship 

among port variables, or a set o f equations, can be supplied. 20Sim supports two features 

with respect to a component's equations that are of particular importance. First, a 

component's equations are treated symbolically. The result o f this design is that multiple 

causal forms can automatically be derived. As was previously mentioned, this point is 

key for supporting the reuse o f physical system models. Second, each instance of 

SIDOPS+ model maintains its own set o f equations. The result o f  this design is that a 

given SIDOPS+ model can be used with greater flexibility. However, an unfortunate 

consequence also results. A SIDOPS+ model has limited ability to ensure that its 

equations are modified in a way consistent with original intentions. As an example, it is 

possible in the 20Sim environment to specify the equations o f a bond graph, I-port C- 

Component to behave as an R-Component, as discussed in Section 2.1.1.
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Library support in the current version o f 20Sim is limited to placing SIDOPS+ 

models in various directories of the operating system. However, a design for more 

extensive library tools has been described (Bruenese, 1997).

3.1.2 Contents of Chapter

Based on the review o f currently available tools and the desired goals of this 

research, an implementation o f an environment for modeling mechatronic systems was 

created. The modeling environment developed is called Model Builder (MB). General 

features of the MB and an example o f working with a modeling component are described 

in Section 3.2. Using MB to define a new Template, both by starting from scratch and by 

using an existing Template, is illustrated in Section 3.3. Section 3.4 presents tools for 

browsing the contents o f  a library.

3.2 Creating and Editing Component Models

3.2.1 General Features

As can be seen in Figure 12, the MB environment is graphically driven and uses a 

common Windows interface. A list o f available Templates appears on the left-hand side 

o f the screen in the list labeled "Components". This list was specifically not labeled 

"Templates" to avoid forcing the advanced features o f Templates onto users who simply 

want to use the environment for creating models based on existing Templates.
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Consequently, in the rest o f  this chapter, "Component" is often used as a synonym for 

"Template". The context o f the discussion will make the actual meaning clear.

The list o f Components initially displays all o f  the Templates that are known to 

the system in alphabetical order. However, as is indicated in the figure, there are more 

sophisticated tools for browsing the list of Components. These features are described in 

Section 3.4.

Upon starting MB a new model is created. The top-level contents of a model are 

displayed in a Model Window. Multiple model files can be opened concurrently in the 

environment, with each model displayed in its own Model Window. The contents of 

Subsystem Components can also be displayed concurrently. To view the contents of a 

Subsystem Component, the right-mouse button is clicked on its icon. This action 

produces a "context menu" with commands that are applicable to the Subsystem 

Component. One o f the context menu commands is "View Contents". If the Subsystem 

has not already been opened, then selecting this command causes a new Model Window 

to be created, displaying its contents. If  the Subsystem has been previously opened, then 

selecting this command causes the Subsystem's Model Window to be brought to the top 

o f the windows stack. There is no limit to the depth o f imbedded subsystems in this 

environment.

In Figure 12, the top-level contents o f a model called Model 1 is shown on the top 

right-hand side. There is a single Subsystem Component in the top level o f  Model 1,
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called Subsystem_l. The contents o f Subsystem_l, which is currently empty, are 

displayed in a Model Window on the bottom right-hand side.

Mil  M n d e M
File £ d it View Window jle lp

h o H
LlMH HHH fflU S 3
Components:

^eady

Q  Signal 
E  Sink 

Source  
5eJ Source of Effort 
13 Source of Flow  

Subsystem  
(2) Sum
.T >.r ’.V ., .\T \-.W .V .W w /.'A W .W .W V ,V A W V /A V A \W W .\V

Keyword Filters:

.. a
S ii 1
I \
irrr, j

i
U pdate

Capacitance \
Core n
Inertia ? 1
Power
Power Conserving i z i

Display By:

Keyword Filters 3

i M u d e  11

Subsystem_1

^
^  „.sl vi

4D M odell :Subsystem _1 u l n l f x l

NUM

Figure 12. Model Builder Environment.

Selecting the desired Component from the Component List and dragging it into an 

active Model Window creates an instance o f a Component. After this action an instance 

of that Component Template is created and its icon appears in the Model Window. The 

Component icon can be positioned freely in the Model Window by dragging it with the 

mouse. As is standard with graphically driven tools, many o f the objects that are created
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in a Model Window can be easily positioned by dragging, including a Component's Ports 

and its Label.

3.2.2 An Example

Some additional features o f the general interface and the Template design can be 

demonstrated by considering the process of creating an instance and editing a bond graph, 

one-port Capacitance Component. The first step is to locate the desired Component from 

the Component List. Once the desired Component Template has been found, a new 

instance of that Component is created. At this point, an icon representing this component 

will appear in the Model Window, as shown in Figure 13. The half arrow on the left is a 

Power Port and is labeled "I". The Component label is "Capacitance_l". These labels 

can be edited and displayed or hidden at the user's discretion.

Figure 13. An Instance of Bond Graph, One-Port Capacitance Component

The Template that defines the Capacitance Component is used to ensure correct 

Component "behavior". For instance, it is not possible to delete the Power Port or to add 

another Power Port or a Signal Port. Additional Template data restricts the way in which

Capacitance_1
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the Capacitance Component's Equations are edited. Figure 14 shows the interface for 

editing the Capacitance Component's Equations. By default, there are two Equations. 

The first equation listed is a state equation. It is an inherent part of the definition o f a 

Capacitance Component. Therefore, this equation cannot be edited or deleted. Disabling 

the A dd  and Delete buttons when the state equation is selected enforces these restrictions.

The second equation in Figure 14 is a linear constitutive law. However, since the 

Component is not restricted to this linear form, this equation can be edited, but not 

deleted. An additional constraint on editing this equation is that it must be o f the form 

el= ^(ql), where ^(ql) is any function o f  the variable ql.

L q u a t i o n ;
Definition:

q1 « lntegral(fl.O) 
e l * q1/C Add

Edit |

.; w w s w w n w m v .n v w w v .v i

I Delete i

,VAV,\VAV.WWAV,V.-.W.VAV%VAV.%\W.

Description:

State Equation

^W A 'A ’A W IA V A 'A W JW A W A W A ’W .W M 'M W .V A W

Figure 14. Editing the Capacitance Component's Equations.
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3.3 Creating and Editing Templates

In this section the tools provided for creating a new Template, for deriving a 

Template from an existing Template, and for editing an existing Template are discussed. 

The ideas are introduced by way o f examples.

3.3.1 Creating a Solenoid Template

One of the design goals for this environment was to simplify the process of 

creating Templates. To this end an interface was designed that amounts to filling out a 

series o f forms. Each o f these forms will be reviewed for the process o f creating a 

Template for a simple model o f  a solenoid, represented in Figure 15.

Movable
Slug

'oil

Figure 15. A Solenoid Component.
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3.3.1.1 Initial Form

The first step in creating any Template is to select an existing Template from the 

Component Template list to act as a Parent. The constraints that are specified by the 

Parent are inherited. In this first example, a general Core Component is selected as the 

Parent. In this case, the only constraint inherited is that the new Template must also be a 

Core. When the parent Template has been selected, then the File menu command "Create 

Template..." can be selected. At this point the form shown in

Figure 16 is displayed, with the Parent Template name automatically filled in. This form 

also provides the opportunity to give the new template a name, which must be unique 

when compared to the list o f existing Templates. In the current case, "Solenoid" is 

chosen as the name for the new Template.

I (111 l ( i <\i j i  i i ri* • r 11 I » n i p l  i t . '  r i n  i l l  f i f ' d  N n n i » *  O

Paren t Template: 

jC ore

T em plate Nam e: 
Solenoid

Cancel

Figure 16. Solenoid Template: Initial Form.
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3.3.1.2 General Properties

The general properties o f a Template are specified using the next form. The first 

piece o f information is the Component Type that will be created. In the general case, the 

choices are Core or Subsystem. In the present case, when the parent Template is a Core 

component, there is only one option: Core.

There are two Display Icon Types available: Text or Bitmap. This property refers 

to the way in which a display icon for a Template is generated. The default option, and 

the simplest, is to specify a text string that will be used to create an icon. The second 

option is to supply a bitmap file that has the same base name as the Template that is being 

created. In the current case, Bitmap is chosen as the display icon type and a bitmap file 

called "Solenoid.BMP" must be externally generated.

The next general Template property is the Default Label. Each Component that 

exists in a Model Window must have a unique label. The reason for this restriction is that 

the label is used to generate unique System variable names. For Signal Ports, which have 

one variable associated with them, System Variables names are automatically generated 

by concatenating the Port name with the Component name. For Power Ports, which have 

two variables associated with them, System Variables are automatically generated by 

concatenating the name of the each Variable with the Port name and the Component 

name. This naming strategy makes it possible for two instances o f a component to have 

the same port name set.
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Every Component instance that is created will automatically have the default label 

specified in the Template appended by the instance number. For example, if the default 

label is "Solenoid" then first Solenoid created in a Model Window will be called 

"Solenoid 1" and the second will be called "Solenoid2" and so forth. After an instance is 

created, its label can be changed by the user, subjected to the constraint that the label is 

unique among all other Components in the same Model Window.

Finally, a set o f Keywords can be associated with the Template. There are no 

restrictions on what can be specified as a keyword, but each one should be thoughtfully 

chosen. As will be demonstrated, the keywords associated with a Template can be used 

to help search through a set o f Templates. The completed form for the general 

properties of the Solenoid Template is shown in Figure 17.

■ ■ H H H K i l

Com ponent Type: Default Label

1.9?.?..........................J 3 Solenoid

D isplay Icon T ype: Keywords:

[Bitmap 

Bitmap File:

Core j'* i 
Pow er Conseiving 
Transducer

|Solenoid.BM P
L i!

---------------------------------------------------

< Bock |  fcjext > |  j C ancel |

Figure 17. Solenoid Template: General Properties.
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3.3.1.3 Number of Ports

A form for specifying the number o f In Ports and the number of Out Ports that can 

be associated with a Component must be completed for each Port Type. Currently, two 

types of Ports have been defined, Signal and Power. For this Solenoid Template, it is 

specified that there should be no Signal Ports o f  either direction. Specifying that the 

number o f In Ports and Out Ports as fixed at 0 completes this objective. Figure 18 shows 

the completed form for the number o f Signal Ports on the Solenoid.

1 N um ber of Signal Ports'

_ ---------, N um ber 1
iFixedj |-------- [

O  V ariable j £ 5  j

^  _  Number. 1
i  (5—[3 : C- V enable  f ___ 2 $

-  T o ta l------------------------------------------------------------ •[

<♦- Fixed | 
O  Variable j

: ................. ...... ......................t

< B ack  Next > |  j Cancel j

Figure 18. Solenoid Template: Number of Signal Ports.

The next decision to be made is the number o f Power Ports to be associated with 

the Solenoid. In this case two Power Ports are needed, one to represent the flow o f 

electrical power to and from the solenoids coils, and another to represent the flow 

mechanical power to and from the solenoid's slug.
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A design question arises in deciding on the direction o f the Ports. One possibility 

is that the direction o f the power flow is unimportant and can be freely specified for any 

instance o f the Template. In this case, the form is completed as shown in Figure 19. 

Here, the total number o f Ports is fixed, but the In Port and Out Port numbers are variable 

from 0-2 and the default numbers are I . This combination o f constraints will ensure that 

the total number o f Ports is always two (the sum of the default number o f In and Out 

Ports), but the directions o f  either port can be set to be In or Out.

1 ( l i t  1 11 r  r  i  p  i ' n  i  • n  t I  i  ■ m  f  1 1 •

ln-
N um ber of Pow er Ports:

C- Fixed
<5- Variable!

Out---------------

C  Fixed 
©  V ariable

-T otal •

<r- Fixed 
C- V enable

Min: M ax Default

jo ia p  £ I i SIL wifl____

Min: M ax Default :

EZBTZHlZB I

"<B ack |  Ejext > |  [ Cancel j

Figure 19. Solenoid Template: Number of Power Ports, Option I.

Another possibility is to specify that the In Port and Out Port numbers are fixed at

1. The completed form to accomplish this objective is shown in Figure 20. In this case, 

it is assumed that the solenoid is used by applying electrical power to generate 

mechanical power, although power can still flow in either direction. Therefore, the 

alternative to have a fixed number o f In and Out Power Ports is selected.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

F i i  1 1 : i ) r n  ( 11 f i  * • n  '  T * r n  p • I ' i t *  • ■ i \ \ (• t 1 . ' i f '  t f ' 1 N u m t a
Num ber of Pow er Potts:

— In-------------------------------- ---------------------------------:

©  F ixed
Number. [

i t ....m |©  V enable

—O ut------------------------------

©  Fixed
N um ber [

1' i) I
.......................................F

C  Variable

—T o ta l --------------------------

©  Fixed
}

C  Van ab le t
I

< flack £Jext» Cancel

Figure 20. Solenoid Template: Number of Power Ports, Option 2.

3.3.1.4 Default Port Properties

After the number of Ports has been determined, additional Port Properties can be 

specified. The next form, shown in Figure 21, is used for this purpose.
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I i M  I ( i r • i [ . i r  * " ' t  ' . . r - , p | , , f ~  i i l l »  - w f  I ' . f t a

Power Ports:
Coil
Slug

; Edit Properties |

■Constraints on S et----------------------------------
G  Ports all have the sam e power domain

G  U se Input/Output Rule

[ <flack |  Ne»t> ~~| j Cancel ]

Figure 21. Solenoid Template: Editing Power Port Properties.

There are two Power Port properties that may need to be applied to the all the 

Ports as a set. First, all the Power Ports may be required to have the same power domain. 

Such is the case when defining a bond graph 0- or 1- junction. However, this is clearly 

not the case in the current situation. Second, the variables that are used as input and 

outputs may depend on a rule such as on a bond graph 0- junction where only one 

"effort" variable is to be used as in input, but it doesn't matter which port specifies the 

input effort variable. The solenoid does not require such a rule.

This form also lists default names for each of the default Ports that were specified 

on the previous form. The properties of each Port listed are specified by selecting the 

Port of interest and pressing the "Edit Properties" button. In the current case, the In Port 

represents the electrical coils and the Out Port represents the slug.
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Figure 22 shows the form for editing the properties o f the Port representing the 

electric coil. The Port Label is used in generating unique variable names. Therefore, 

each Port must have a unique Label. A useful Label in the current case is "Coil".

1
Label: Location (Degrees):

I

r
1?“ ____ _________ • I-90 M

Direction: Input/Output Constraint (7: Fixed
ii
I b _________ ...... ..E l | Preferred: Effort In/FlowOut EJ

$
Power Domain: (?| Fixed State Variable: p; •Fixed?

f Electrical E l jp (momentum) __________ M$I
it
js
I c OK j Cancel

!

F igu re  22. Solenoid T em plate: Specifying th e  C oil P o rt P roperties.

The initial Location o f the Port is specified here. The value given represents the 

degrees from a horizontal line extending from the center o f the Component to the right. 

Angles are measured using counter clock-wise as positive. To be congruent with the 

schematic shown in Figure 15, the Port will be initially placed at -90 degrees. The 

Direction o f the Port is displayed for reference purposes, but it cannot be changed here.

The Power Domain o f  the Port is specified on this form. The system understands 

five different power domains: General, Mechanical Translation, Mechanical Rotation, 

Electrical, and Hydraulic. The power domain value for a port is used for two purposes. 

First, the power domain determines the names o f the Variables associated with the Port.
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The Variable names and descriptions for each o f the Power Domains are listed in Table 1. 

Second, the system ensures that only Ports with the same power domain are connected.

Table 1. Port Variable Names.

Power Variables
Domain Names Descriptions

e Effort

General
f Flow
q Displacement
p Momentum
F Force

Mechanical V Velocity
Translation d Distance

Pt Momentum
T Torque

Mechanical w Angular Velocity
Rotation Theta Angular Displacement

h Angular Momentum
V Voltage

Electrical i Current
qe Charge
Lambda Flux Linkage
P Pressure

Hydraulic Q Volumetric Flow Rate
Vh Volume
.e!l. ____ Pressure Momentum

In the current case, the power domain for the coils is chosen to be "Electrical". 

Additionally, every instance o f this Port should always be defined as an electrical Port. 

Selecting the "Fixed" check box that is next to the Power Domain options specifies this 

constraint.

As has just been mentioned, Power Ports have two variables associated with 

them: one functional input and one functional output. Which Port Variable is an input
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and which Port Variable is an output is influenced by the Input/ Output Constraint. For 

the case o f the coil, the effort variable, or voltage, is specified as preferred as an input. 

This constraint has to do with the preferred form of the equations that will be specified 

shortly. As a device which stores electrical power, a State Variable is associated with 

this port, which represents the flux linkage o f the coils. A corresponding form for the 

slug Port is shown in Figure 23.

Label: Location (Degrees):
? ISlug 90

[ .
| Direction: Input/Output Constraint Fixed

1 I0 '- a j Preferred: Effort Out/Row i~Jj:
1
I Power Domain: (5? Fixed State Variable: 51 Fixed

1 j Mechanical Translation H jq  (displacement) __ El

OK □ i Cancel j

Figure 23. Solenoid Template: Specifying the Slug Port Properties.

3.3.1.5 Equations

The next set o f forms deals with the functional aspects o f the solenoid. In this 

example, a set o f parameters and a set of equations are defined. Some planning is needed 

to set up a meaningful set of parameters and equations that will be useful and flexible for 

a user working with an instance o f the Solenoid Template. The goals in defining the 

functional properties of the solenoid are to
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1) provide a default set o f parameters and equations that will describe the solenoid's 

behavior in a meaningful way;

2) Allow for the user to modify the default equations; and

3) Assist the user when editing the equations in ways that minimize errors.

Recall that the inductance value o f the coil varies as the slug moves through it. 

This effect is due to the differences in the permeability o f air and the slug material. A 

general form of the relationship between the coil's inductance vs. the position of the slug 

is shown in Figure 24. When x is zero, the slug is centered in the coil. As the slug moves 

out o f the coil in either direction, the inductance decreases until it reaches its minimum 

value. This relationship can be represented by the parameterized equation given below.

In Equation I Lo is the maximum inductance value o f the coils, Lmin is the minimum 

inductance value o f the coils, and c is a general measure o f how quickly the inductance 

changes from Lo to Lmin. In practical terms, the parameters Lo, Lmin, and c can be 

chosen so that shape of Equation 1 matches the desired characteristic.

r

L{x) = L min+ [1]
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Lo

  Lmin

Figure 24. Inductance of Coil as a Function of Slug Position.

Two equations can be used to describe the behavior of the solenoid at its ports. The 

general form o f these equations is given below.

/ = i(A, x) [2]

F  = F (A ,x) [3]

For a linear inductance model Equation 2 becomes

i = k t  L(x) [4]

For a more complete discussion of the behavior o f a solenoid device, see Karnopp, et. al. 

(1991), pp. 284-289.

Using the information above, the Parameter form for the solenoid Template can 

be completed as shown in Figure 25. On the right the constraints that can be applied to

the set o f parameters is shown. If the "Fixed" option was checked, then the parameter

equations would all be considered constants, i.e., the user could not edit them. This is not
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true in the current case. On the left the parameters used in Equation 1, with default 

values, are specified.

Default Param eters
Lo = 0.004 
Lmin = 0.002 
c - 0.004

pC onstraints on S e t-  

j G  Fixed

Add j j Edit j j D elete |

< B ack |  Next > j j C ancel j

Figure 25. Solenoid Template: Default Parameters.

Each parameter has a set o f properties. The form for the parameter Lo is shown 

in Figure 26. The parameter is defined and given a default value in the top line o f the 

form. A Parameter can be specified using a constant value, like shown in the figure, or as 

an equation made up of constants and previously defined parameters. A list of the 

parameters that have been previously defined is listed here for quick reference. Note, 

however, that Parameters cannot make use of the time variable and must be explicitly 

computable; i.e., algebraic loops among Parameters is not allowed.

The Parameter Properties form allows for a definition to be associated with the 

Parameter that will be used to assist the user in specifying its value. Two types of
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constraints can be applied to an individual parameter. If the parameter is to be treated as 

a constant, then it is constrained as "fixed". In the current case, there is a constraint that 

the parameter must always be defined within a specified range. Similar forms can be 

completed for the other two parameters.

I Default Param eter !
; |Lo = 0.004 !
i Description:

; llnductance value when the slug is in completely in the coil. i j

□  Fixed S?j Value Limits j
Min: |o.QQ2 |Max: Jo.QI

J
Available Variables: J
c
Lmin

OK |  | Cancel j

Figure 26. Solenoid Template: Defining Default Parameter.

After the Parameter properties have been specified, a set o f Equations can be 

defined. Figure 27 shows the form with the default equations specified for the solenoid 

Template. A list o f constraints that may be associated with the Equations as a set is listed 

on the right-hand side o f the screen. The meaning of these constraints is described 

below:

Fixed - None o f the default equations can be edited by the user.
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Algebraic - The equations can only be defined using algebraic operators. Specifically, 

the integral and derivative operators cannot be used.

No Use o f Time Variable - None o f the equations can make explicit use o f the time 

variable.

m

Default Equations '-C onstra in ts on S e t------------------

lam bdeCoil -  lrrtegral(vCail.O) 
dSlug -  Integral(VSIug.0)
L -  Lmin -  (Lo-Lmin)/p
dL_dSlug -  -2*(dSlug/c)lLo-LMin)/(l ♦(dSlug/c)“2)"-2 
■Coil -  lam bdaCoil/L
FSlug = HambdaCoir2*dL_dSlug/(2*L~2)

; ! □  F a e d
: i
\ |  C i Linear 

| G  No U se  of Time Variable

\

i Add | | Edit |  ; D e le te ]

< 0 a c k |  Mext > |  j Cancel ]

Figure 27. Solenoid Template: Default Equations.

On the left-hand side o f the form are listed the default Equations that have been 

defined as part o f the Solenoid Template. The first two Equations are automatically 

defined and cannot be edited or deleted at this point. This result is a consequence o f 

choosing the coil and slug Ports with state variables as discussed in Section 3.3.1.4. The 

other four Equations are defined and modified using the "Add" and "Edit" buttons.

Each Equation has a set o f properties. Figure 28 shows the properties for the 

default Equation that defines the Force at the slug Port. As was previously discussed, this
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equation has a fixed form. Selecting two Constraints specifies this behavior. First, the 

"Edit Right-Hand Side Only" constraint is chosen. This constraint indicates that the 

FSlug variable must always appear on the left-hand side o f the equation. The second 

constraint restricts this equation to only be composed o f the variables listed. Similar 

forms can be completed for each o f the other Equation shown in Figure 27.

f  >♦ * f  1 n *  • f  i } u  m M 1 1 n  f  r i  i p • • r t n  *

Default Equation:

Default Force equation

□  Fixed

Wi Edit Right-Hand Side Only

□  Restrict to Linear

O  Restrict to Algebraic 

O  No Explicit U se of Time Variable

i ok; j

0  Restrict S et of
Available Variables:

|FSIug=-lambdaCoir2*dL_dSlug/(2*L',2)

Description:

Lmin. _

Figure 28. Solenoid Template: Slug Force Equation.

3.3.1.6 Properties Summary

After completing the above forms, the solenoid Template definition is complete. 

At this point a summary o f the properties that were specified in the previous forms is 

given, as shown in Figure 29. After pressing the Finish button, the name o f the new
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Template will appear on the list o f Components in the main MB window and be available 

for use. An instance o f  the Solenoid will appear as shown in Figure 30.

iW B K * 1

New Tem plate Properties:

Name: Solenoid.
Parent Tem plate: Power.
Com ponent T ype: Core.
D isplay Icon T ype: Bitmap: File: Solenoid.BMP. 
Default Label: Soienoid.
Keywords: Core Pow er Conserving Transducer

Constraints on Signal Ports: 
Signal Ports In: Fixed. 0 
Signal Ports O ut Fixed. 0

Constraints on Pow er Ports:
— ...... - ____ _3

< B ack 1" Finish "j 1 Cancel ]

Figure 29. Solenoid Template: Summary Page.

$
Coil

Figure 30. An Instance of the Solenoid Template Icon.

3.3.2 Deriving a New Template From an Existing Template

As can be noted by working through the previous example, there are many 

questions that need to be addressed when creating a new Template. Although using a set
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of forms simplifies the process, an additional simplification can be achieved by 

exploiting the fact that the constraints specified in a Template's parent are inherited.

In recognizing this fact, it is useful to "seed" a Template library with a set of 

Template definitions that have selected properties constrained. For example, it can be 

useful to define a general "Signal" template that only adds the constraint that there should 

be no Power Ports. Once this is done, then the Signal Template can be used as a parent 

when generating a set o f block diagram Templates. Then, when creating a new Template 

based on the Signal Template, the decision on how many Power Ports the new Template 

should have is already made.

The feature o f inheriting constraints from a parent Template can also be useful 

when two similar templates are to be specified. As an example, consider a Template that 

defines a field-controlled DC Motor that allows for non-linear mechanical resistance. 

Such a Template might be defined with three Ports: an In Electrical Power Port, for the 

motor armature, an Out Rotational Power Port, for the motor shaft, and a Signal Port, for 

the field current. This information is represented in Figure 31. The default equations that 

might be associated with this Component Template, along with the constraints for editing 

them, are listed in Table 1.
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sUif

Figure 31. A Field-Controlled, Non-Linear, DC Motor Icon.

Table 2. A Set of Equations for a Field Controlled DC Motor.

Equations Constraints
vArm — vL + vR + vM Fixed
TShaft = TM - TJ - TR Fixed
idot = der (iArm) Fixed
wdot = der(wShaft) Fixed
Km km* if Restricted Vars: 

Km, km, if 
Edit RHS

vL = L*idot FixedvR = Re*iArm Fixed
vM = Km*wShaft Fixed
TM = Km* iArm Fixed
TJ = J*wdot Fixed
TR Rm*wShaft Restricted Vars: 

TR, Rm, wShaft 
Edit RHS

Defining such a Template takes care, planning, and time. The result is a new 

model type that can be instantiated with relatively little effort. The Template is also 

flexible in that it not only allows for specification of some model parameters, but it also 

allows for modification of the mechanical resistance equation while ensuring that this 

function has the correct form.
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The initial Template design effort can be further exploited if a model o f a 

Permanent-Magnet DC Motor with all linear equations is to be defined, as shown in 

Figure 32. In this case, the previous Template definition can be used as a Parent 

Template. This decision would greatly reduce the effort required to define a new 

Template. Only a few additional constraints need to be added, namely that the Signal 

Port is not needed, the Km value is a constant, and the resistance equation is Fixed to a 

linear form.

Arm 
- b

Figure 32. Permanent Magnet DC Motor Icon.

3.3.3 Editing Existing Templates

New model types based on a Template definition are intended to be a robust tool 

for assisting those who later create instances o f the Template for a particular modeling 

purpose. The task o f creating a Template that is precisely defined and has the desired 

characteristics can be an iterative process. A typical process would be to specify the 

properties o f a new Template, create an instance of the Template, "test" if the behavior is 

as expected, and, where needed, modify the properties o f the Template. This process 

may be completed many times until the desired Template design is achieved.
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It is obvious that the modeling environment should provide tools for editing the 

properties o f an existing Template. In MB, this task is easily accomplished by first 

selecting the Template that is to be modified. Then, selecting the Edit menu command 

"Edit Template" allows the user to review the set o f  forms that were filled out when the 

Template was initially completed, and to make changes where desired.

Although the benefits o f  editing an existing Template are obvious, there are some 

dangers in using this feature that could potentially cause problems and confusion. One 

issue involves the concept o f  inheriting constraints from a parent Template. If a 

Template that is being edited specifies a different Parent than originally chosen, then 

some of the current properties of the Template could possibly violate constraints set by 

the new Parent. For example, consider a Template that specifies one Signal In Port. 

Upon editing this Template, suppose a new parent was selected that specified zero Signal 

Ports. At this point, there would be a conflict between the current Template definition 

and its parent Template's constraints. A similar situation could arise if the Template 

being edited has been used as a Parent itself. Changes in a parent Template could create 

conflicts with existing children Templates.

To address the issue of the potential for conflict between the parent and 

Templates, the environment has been given two restrictions. First, a Template's parent 

can not be changed during the editing process. Second, a Template that has been used as 

a parent Template cannot be edited at all.
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Another similar issue involves the relationship between a Template and any 

instances that have been defined. Adding a constraint to an existing Template when 

editing it could create a situation where a pre-existing instance has properties that violate 

constraints specified by the Template. At this point in time, a strategy for automatically 

dealing with this potential conflict has not been defined and warrants additional effort. In 

the mean time, knowledge o f this issue can serve as a guide for the editing of Templates.

3.4 Library Browsing Tools

To address the problems o f searching through a large list o f Templates in a library 

three different organization schemes were developed: by Keyword, by Constraint, and by 

Generation History. These ideas were discussed previously in Section 2.3.4. In the next 

three sections the implementation o f these ideas in the MB environment is discussed.

3.4.1 Keywords Filters

Associated with each Template defined in the MB environment is a list of 

keywords. In the main interface o f the MB environment (see Figure 12) the set o f all 

Components known to the system is displayed in a scrollable list, alphabetically ordered. 

To facilitate searching through this list, the MB environment provides a feature for 

"filtering" the list o f Components that are displayed by a set o f keywords. Beneath the 

list o f Components is a selectable list o f all the keywords that have been associated with 

all o f  the Templates defined in the system. Initially, none o f the keywords are selected, 

which indicates that the entire list should be displayed. A set o f one or more keywords
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can be selected in this list to become the current "Filter". When an "Update" button is 

pressed the system examines the keywords associated with each Template and displays 

only those that match the set o f keywords in the filter. An example of this feature is 

shown in Figure 33. The keyword filter is "Signal". All o f the Templates that have this 

keyword associated with it are displayed in the list above.

Components: 
3  Distributor 
U  Function
3  Gain
U  Integrator 
Q  Signal 
3  Sink 
U  Source 
D  Sum

Keyword Filters: : Update |
j Power Conserving i d
Rotation

{Source
{Transducer______
Display By:
Keyword Filters

Figure 33. Filtering Templates by Keywords.

3.4.2 Constraint Filters

As was pointed out in the previous chapter, one limitation to using keywords as a 

searching device is that there is no control over what keyword gets associated with a 

Template. An additional search method proposed was to use Constraints instead of 

Keywords as the searching tool. This option was implemented in the MB environment in 

the following way. For each Constraint that is associated with a Template, a "Constraint
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String" is generated. The Constraint String is a brief text description o f  the Constraint. 

This way, Constraint Strings can be used as a search tool in a fashion that is directly 

analogous to the way that Keywords are used.

One advantage to this idea is that the strings that represent the Constraints 

associated with a Template are not arbitrarily chosen; they are automatically assigned. 

This way there is always a one-to-one correlation between a Constraint String and the 

actual Constraint associated with it. Also, the Constraint String is always guaranteed to 

represent an actual characteristic of the Component.

Using Constraint Strings as a filter is illustrated in Figure 34. The Constraint 

string used was "No Power Ports". The result o f this filtering produces the same list of 

Components was found with the previous Keyword filtering search. However, this time 

it is certain that every Component displayed can never have a Power Port. The same 

statement cannot be made in the previous case.
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Components:
3  Distributor 
H  Function 

Gatin 
U  Integrator 
Q  Signal 
• ]  Sink 
^  Source 
(D Sum

Constraint Rlters

No Signal Ports 
Subsystem 
Variable Power I 
Variable Power (
Display By:_____
^Constraint Rlters

Figure 34. Filtering Templates by Constraints.

3.4.3 Generation History Display

During the Template creation process, a Parent Template must always be chosen. 

Although it is possible to derive each Template in the system directly from the General 

Multiport Template, as was previously discussed, it can be helpful to use a thoughtfully 

chosen Parent. This process naturally leads to a tree-based ordering o f templates. This 

feature is exploited in the MB environment by allowing for the Templates to be displayed 

based on their parent-child relationships.

Figure 35 shows a particular parent-child ordering o f  a set o f Templates. 

Templates that have been used as parent Templates but do not currently have their 

children displayed on the screen have a box with a plus sign next to them. Double
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clicking on the plus sign causes the list o f  the Template's children to be displayed and for

the plus sign to be changed to a minus sign.

Components:
a  Q Core

-O Power 
e-fcl Capacitance

k [c] C 
f  [c] Ce 

1 [c] Ce' 
t  [c] Ch 
f  - [c] Cr 
4 -[c] Ct

*-f®1 Common Effort 
Common Flow 

*  Gyrator 
: * 0  Inertia 
; * 0  Resistance

 Q  Solenoid
| * -HI Source of Effort 

*••13 Source of Row 
*-1tf] Transformer 

* O  Signal 
4 'jp Subsystem

Figure 35. Template Generation History Display.

Display By:
jGeneration History 
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CHAPTER 4 
CONTROLLED ACCESS

4.1 Introduction

In the previous two chapters, issues related to design of a modeling environment 

that supports mechatronic systems modeling and methods for organizing and searching 

the contents o f a model library were addressed. This chapter discusses the third major 

topic addressed by this research, the issue o f controlling the access to internal model 

details. Such considerations arise when two companies must share model information to 

accomplish a system design. Some model information may be proprietary to one of the 

companies. This situation is becoming more common as larger corporations outsource 

component designs. This situation may also be o f concern in an educational setting 

where a course instructor, a teaching assistant, and students all use the information in a 

model file. However, persons in each o f these groups should not necessarily have the 

same ability to view and modify the contents o f the model.

A simple solution commonly used to protect information is to prevent access to 

the entire contents o f a component model. In this case, use o f such a model is greatly 

restricted, with access often limited to specifying parameter values and port connections. 

Such an approach, while protecting the interests o f  the model provider, can be frustrating 

to practicing engineers who use the model. Models may be difficult to use correctly due 

to a lack o f understanding of model details that are inaccessible. If some changes become 

necessary due to design changes, the model provider must be employed to change the 

model.
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In this chapter a concept, design, and implementation for improving the way 

models are shared is presented. The goal is to provide a facility that permits the owner of 

a model to control access to various model details, according to the user classification. 

Such a feature allows for varying levels of security regarding both reading model details 

and modifying them. The ideas presented here combine the General Multiport modeling 

data structure presented in Section 2.2, the need for sharing information among different 

groups, and the desire to control access to information. While these concepts have been 

exploited in different venues, they have not been combined for effective use in a 

mechatronic systems modeling environment.

This chapter is organized as follows. Section 4.2 presents design properties of a 

modeling environment that supports the control o f access to various model properties. 

An implementation based on this design is discussed in Section 4.3. The usefulness of 

the design is illustrated by the presentation o f two examples in Section 4.4.

4.2 Design of a Controlled Access Environment

The MB modeling environment that was presented in the previous chapter serves 

as a base implementation environment for tools to support the control o f access to 

properties o f a model. In addition to the data structures already introduced, one 

additional data structure must also be defined: a M odel File. When a model is built, a 

user defines the properties of a set of General Multiports and connects their Ports. The 

set o f connected Multiports is stored in a Model File. A Model File is generally stored on
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a permanent medium, such as a hard drive or disk. In the current discussion on sharing o f 

model libraries, the Model File is considered the fundamental shared object. Sharing is 

achieved by copying a Model File using standard operating system facilities.

4.2.1 Access-Controllable Attributes

As was previously observed, it can become useful to prevent access to the details 

o f  a model for various reasons. A common method for accomplishing this objective is to 

control the access to a model by restricting access to a Model File. Tools provided with 

some operating systems, such as Windows NT or Unix, can be employed for this 

purpose. Under these circumstances there are three general possibilities for controlling 

access. In the first case, there are no restrictions for opening and modifying the contents 

o f  a model file. In the second case, the contents can be examined or "Read", but 

modifications are not allowed. In the third case, the contents can not be accessed at all.

While this feature can be useful in controlling how and when a model is read and 

modified, the application o f access settings are limited to a Model File as a whole. A 

more sophisticated approach would allow for individually controlling the access to 

various aspects o f a model. Instead o f simply "locking up" an entire model, only critical 

parts o f the model are protected. More flexibility is provided and greater utility can be 

extracted from a model.

Once the concept o f controlling the access to individual model attributes is 

accepted, it then becomes necessary to identify various model attributes for which it may
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be beneficial to establish access control. Such model attributes are referred to as access 

controllable. In this design three access-controllable objects were identified in order to 

demonstrate the usefulness o f the ideas. Table 3 lists these objects and their possible 

access values. For each access-controllable object, exactly one o f the three access setting 

values is applicable at any given time.

Table 3. Three Access-Controllable Objects and Their Possible Access Values.

Object Access Va ues
Core
Equations None Read Read/

Modify
Subsystem
Contents None Open Open/

Modify

Model File None Load Load/ 
Save

For Core Equations, an access value o f "None" indicates that a Core Component's 

Equations can neither be read nor modified. "Read" indicates that equations can be 

studied, but not modified. "Read/Modify" indicates that there are no access restrictions 

on how equations can be modified.

For Subsystem Contents, an access value of "None" indicates that the Contents of 

a Subsystem Component cannot be viewed or modified. "Open" indicates that a 

Subsystem can be opened and its contents examined, but modifications, such as adding 

and deleting Components are not allowed. "Open/Modify" indicates that there are no 

restrictions on examining or modifying the contents of a Subsystem.
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For a Model File, an access value o f "None" indicates that the contents o f a Model 

File will not be loaded when the file is opened. "Load" indicates that the file contents can 

be loaded, but changes cannot be saved. "Load/Save" indicates that there are no 

restrictions on loading or saving the contents o f a Model File.

4.2.2 Users and Groups

To give further flexibility to controlling access to the properties o f  a model, 

additional data structures are used which are patterned after the UNIX file access control 

(Stallings, 1998). First, a Current User is defined. The Current User is a system 

parameter used to identify the person currently working in the modeling environment. 

The value o f the Current User Variable can be changed at any time, which is equivalent 

to "logging off' and "logging on".

Next, as shown in Figure 36, each Model File contains a set of Groups. In this 

initial design four groups are defined: Owner, Group 1, Group 2, and World. Although 

the number o f groups is currently fixed, in principle the number of groups is variable. 

Associated with each o f the first three groups is a unique list o f  Users-, i.e., each User is a 

member of exactly one group.
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Model File

Owner
Group

World
Group

Group 1 Group 2

Owner 
User 1

Group 2 
User 1

Group 1 
User 1

Figure 36. Organization of Groups and Users.

Using this classification scheme, the Current User is always identified as 

belonging to exactly one Group. If the Current User is among the Users on the Owner 

list, then the Current User is considered an Owner. If the Current User is among the 

Users on the Group 1 list, then the Current User is consider a Group 1 User. If the 

Current User is not contained on any list, then the Current User is considered a World 

User.

The functional purpose of the data structure above is to classify the Current User 

as a member o f one of the Groups. When a new Model File is created, the Current User 

is automatically added to the list o f Users o f the Owner Group. The lists associated with 

the other Groups are initially empty. When an existing Model File is opened, then the 

Current User is identified as an Owner, Group 1, Group 2, or World User.
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4.2.3 Group Access Settings

Each access-controllable object maintains an independent set of access values for 

the Group 1, Group 2, and World Groups. For example, a Core Component can specify 

that Group I Users can read and modify its Equations, that Group 2 Users can only read 

its equations, and that Word Users can neither read nor modify its equations.

Users who are classified as an Owner always have complete access to all data in a

model. In addition, Owners can add and delete Users from any o f the Groups. The sole 

exception is that the Current User cannot be removed from the Owner List. (If this 

option were available, then it would be possible for a Model to be permanently "locked 

up".)

Part of the design philosophy recognizes that a majority o f models built in this 

modeling environment will not need to define any type of access control. Therefore any 

implementation should incorporate the following principles:

• Setting Controlled Access values is optional.

• Controlled Access features are exposed only if it is desired to set some control values,

or if control values have been previously set and are being enforced.

• The default Controlled Access Values are such that there are no restrictions on any 

user.
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4.3 An Implementation of Controlled Access

4.3.1 Current User And Group Members

The access control tools described in Section 4.2 are dependent on the value of 

the current user. This value is a system parameter that can be set at any time. Initially, 

the current user is automatically defined as "Anonymous". If controlling the access to 

model properties is not an issue, then this value need never be changed. However, if the 

access control tools are desired, the first step should be to specify a new Current User. 

This task is accomplished by selecting the Specify Current User command from the Edit 

Menu. Selecting this command produces the dialog shown in Figure 37.

S p u i ; i f y  Current  U s e r in
Current U ser 
[Anonymous

WMW M V .V .'.W .W .m W W

OK I 1 Cancel

Figure 37. Specifying the Current User.

Recall that each Model File maintains its own lists of known users and classifies 

them in one o f the four Groups: Owner, Group 1, Group 2, and World. The Current User 

is always classified as belonging to exactly one o f these groups. If the Current User is a 

member of the Owner Group, then that user has the ability to add and remove Users from 

the first three groups. A list o f  Users is not maintained for the World Group. That group
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is used as a default classification for a User who is not a member o f any o f  the other three

groups.

Figure 38 shows the dialog used for specifying the members o f  the Owner, Group 

1, and Group 2 Groups. This dialog can only be accessed if the Current User is a member 

o f the Owner Group. The Group for which the Users are to be specified is selected from 

the list on the top of the dialog. Figure 38 indicates that the list o f Users for Group 1 is 

currently being specified. The list o f  Users o f  the currently selected group appears in the 

bottom half o f  the display. Figure 38 also indicates that three Users currently belong to 

Group 1. An Owner can freely edit the list o f Users o f any Group, with one exception: 

the Current User cannot be removed from the Owner list.

ID

| Group

| Group 1 ...... ....................i l l
Owner I
1 i
Group 2 | j

U sers:
U ser l
U ser 2
U ser 3

■5>

I OK "| P  Cancel™]

Figure 38. Interface for Editing Group Members.
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4.3.2 Specifying Group Access Settings

At any time during the process o f building a model, an Owner User can set the 

access values for any existing access-controllable object. Figure 39 shows the dialog for 

defining access settings for a Core Component's Equations. Right-mouse clicking on an 

existing Core Component accesses this dialog. Right clicking on an object in the MB 

environment causes a list o f menu options that are specific to that object to appear in a 

"context menu". If the Current User is an Owner, then the context menu command 

"Access Settings..." can be selected.

On the left-hand side o f the dialog the Group for which Access Values are to be 

set is selected. On the right-hand side o f the dialog the access values for the currently 

selected Group are specified. The current options shown in Figure 39 indicate that any 

user belonging to Group 1 only has the ability to view the Equations associated with the 

currently selected Core Component. Similar dialogs are available for specifying the 

access settings for a Subsystem Component and a Model File.
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C o r e  E q u a t i o n  A c c e s s  Set t ing ' 3

Group:

OK

Access Value

Group 1 a
Owner

Group 2
World

Read f*>§

Read /  Modify

None

Figure 39. Specifying Access Settings.

4.3.3 Enforcement of Controlled Access

When a model has been created with various access-control settings, enforcement 

is then left to the MB environment. Enforcement is accomplished by determining the 

access value for the Current User to each of the Access-Controllable objects, as described 

below.

Core Component's Equations

• None - Upon attempting to access the equations, a Dialog similar to the one shown in 

Figure 40 appears. This dialog is the interface used for editing Equations. However, 

notice that instead o f displaying the list of Equations associated with the Component, 

a set o f asterisks appears. Also, the buttons on the right-hand side o f the screen which 

normally support the adding, editing, and deleting of equations are disabled.
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• Read - The actual Equations are displayed in the dialog o f  Figure 40. The Add, Edit, 

and Delete buttons are disabled.

• Read/Modify - The actual Equations are displayed in the dialog o f Figure 40 and the 

Add, Edit, and Delete buttons are Enabled.

E q u a t i o n s
| Definition:

I

i$

5

D escription:

OK C ancel

Figure 40. Restricted Access to Equations.

Subsystem Component Contents

• None - When an attempt is made to open a Subsystem, a message is displayed 

indicating that the Current user does not have permission to open the subsystem.
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• Open - The contents o f the Subsystem can be examined, but substantive 

modifications are not allowed. Some types of restricted modifications are editing 

Equations and Adding and Deleting Components, Ports or Connectors.

• Open/Modify - The system behaves as normal, with no restrictions on modifying the 

Subsystem's contents.

M odel Files

• None - When a Model File is opened and it is discovered that the Current User 

doesn't have the proper access permissions, then a message is displayed indicating 

this fact. The contents o f the file are not loaded.

• Load - There are no restrictions on modifying the contents o f the Model file, but it is 

not possible to save any changes that were made. Upon attempting to save a Model 

File, a message is displayed indicating this fact.

• Load/Save - The system behaves as normal, with no restrictions on loading or saving 

Model Files.

4.4 Two Illustrative Examples

The utility o f the features described in the previous section can be illustrated by 

considering two scenarios where the use o f the tools would be of benefit. First, consider 

a company that has been commissioned to design a model o f a mechatronic system. The 

model is to be placed in a feedback control system. The commissioning company desires 

to use the model and test various control strategies using various inputs. Under these
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conditions, the commissioned company might develop the model shown in Figure 41. In 

this figure, the Duty_CycIe and Sum Junction are Core Components and the Control, 

Plant and Measurement are Subsystem Components.

□  IXUM odell

Duty_Cycle Control Plant

M easurem ent

Figure 41. A Feedback Control System

Consider four groups o f individuals that may have access to this model file and 

the way they would use the modeling environment. First is the company that is 

commissioned to create the model. When the person who initiates the project creates a 

new Model file, that person's user name is automatically added to the Owner list. Then, 

if the model development was a team project, that person would add the user names of 

the other people on the team to the Owner group. After a working model was completed, 

it would be the responsibility o f one of the Owners to decide which parts of the model 

should be accessible members o f Group I, Group 2, and World.
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Suppose that the development team decides that an in-house team should be 

formed to validate the model before sending it off to the customer. They further decide 

that they don't want any changes to be made to the plant model by the development team, 

but want them to be able to examine it. In this case, the user names o f the members o f 

the validation team would be placed on the Group 1 list and the access value for the plant 

Subsystem set to "Open". When the validation team uses the model, the find that they 

can look at the contents o f the plant model, but are not allowed to modify any significant 

properties.

The development team then decides to specify one user name for their customer 

and puts that name on the Group 2 list and sets access to the plant Subsystem to "None", 

allowing the customer the ability to use the plant model, but not to have access to its 

details. Finally, the development team decides that anyone else who might gain access to 

the model should have no access to the file at all. The World group access value is 

therefore set to "none".

As a second scenario, consider an educational environment where the modeling 

environment is to be exploited as a "virtual laboratory", in a way similar to the scenario 

described by Rosenberg (1991). In this situation students are given a description o f a 

mechatronic system and asked to create a model o f the system. To make this learning 

experience as valuable to the students as possible, it would be particularly useful if  the 

students were asked to "validate" the models they generate by comparing their numerical
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results with experimental results. Unfortunately, as is often the case, the lack of 

resources often make this goal unattainable.

However, using the tools o f controlled access, a professor, classified as the model 

owner, creates a "true" model o f the system that captures the response o f the system with 

the desired level o f  fidelity. The instructor adds a User Name for the teaching assistant to 

the course to the Group 1 list. The access values for Group I are set such that the TA has 

complete access to view the model contents, but no access to change model properties. 

The list of students in the class is then added to the list o f member o f Group 2. The 

access permission settings for Group 2 would then be specified to give the students 

appropriate access to the model details, as determined by the instructor. Students would 

then be able to construct their models, design "experiments" on the instructor's model, 

and "validate" their results by comparing them to response of the instructor's model. 

Finally, the instructor decides to post the model file on the course web page for easy 

student access. Not wanting to discourage curiosity by others not participating in the 

class, but not wanting to give free access to the material meant for students, the instructor 

sets the same access values for World as for Group 2. In addition, the Model File access 

value for the World members is set to "Load" so that member of the World group cannot 

run experiments based on different model settings.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 5 
CONCLUSIONS

5.1 Summary of Contributions

The completed research described in this document represents a unique and 

significant contribution to the area o f mechatronic systems modeling. The principal 

objective o f designing data structures, formulating new concepts and organizing existing 

information for the use in mechatronic systems modeling has been accomplished. 

Effective use o f the ideas formulated in this document help to simplify the modeling 

process, decrease the effort required in generating new mechatronic modeling 

components and systems, and make it possible to control access to a finer level o f model 

details. These benefits support both industrial needs, where design cycle times are a 

critical factor, and academic needs, where simplified designs allow students to focus on 

relevant modeling issues, not on implementation details.

A specific discussion of the major contributions o f this work is presented in the 

next four sections. Section 5.1.1 addresses contributions that were made in relation to 

Template design. Library tools that were designed and implemented are listed in Section 

5.1.2. An implementation environment that was created as part o f this work is covered in 

Section 5.1.3. Section 5.1.4 presents the concepts and organization of ideas concerning 

controlled access to a mechatronic system's properties.
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5.1.1 Template Design

In CHAPTER 2 the importance o f a relatively new modeling paradigm, the 

specification o f User-Defined Model Types (UDMTs), was discussed. Currently there 

are several modeling environments that support this feature. As part o f this work a new 

data structure, called a Template, was defined. A Template describes the properties o f a 

UDMT. The Template design presented here represents a new way o f organizing 

information about mechatronic system models. The organization provides a different 

perspective for thinking about the way in which UDMT are defined and their role in 

creating models o f mechatronic systems. The Template definition includes a modeling 

structure, called the General Multiport, a set o f constraints that prescribe desired behavior 

for instances o f UDMTs, and a set o f default properties. The explicit use o f constraints to 

prescribe the way in which instances o f UDMTs can be modified and classified is a new 

and unique.

A definition o f the General Multiport modeling structure was also part of this 

work. The General Multiport is specifically designed to support models o f mechatronic 

systems and components, hierarchical design, and model reuse. The properties of a 

General Multiport describe the range o f  properties o f possible models that can be built. 

The fundamental definition presented is an extension o f previous work. The definition is 

sufficiently general to allow for definition o f a large class o f practical engineering 

models.
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A Template defines a unique way for organizing the properties o f a UDMT and 

provides ways to specify functionality in a modeling environment that was not previously 

possible. Specifically, the Template definition makes it possible to

(1) bound the allowable configuration o f a model's properties,

(2) derive new Templates based on existing Templates, and

(3) structure and classify a set o f Templates in useful and meaningful ways.

The usefulness o f the these features was demonstrated by considering possible 

ways that they could be exploited in a modeling environment for mechatronic systems. 

The first feature makes it possible to ensure that the way model instances are used is 

consistent with the Template definition. The second feature provides a means to simplify 

greatly the process o f defining a new Template and gives an improved method for 

providing a natural structure to a set of Templates in a library. The third feature aids in 

the process o f browsing the contents o f a model library with a large number of model 

types. This benefit is discussed in the next section.

5.1.2 Library Tools

Tools for browsing the contents o f a library o f  model types were designed and 

demonstrated in this work. The Template data structure made this design possible. The 

way in which these tools are designed and operate has not been previously exploited. 

Three methods were presented for searching the contents o f  a library o f modeling 

templates.
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• By Keyword - One of the attributes o f a General Multiport definition is a set of 

keywords. MB provides a mechanism for searching through a list o f Templates and 

finding ones with matching keywords.

• By Constraint - The constraints that are specified in a Template help to define the 

way in which a model instance behaves. MB provides tools for searching through a 

list o f  Templates according to constraints. This tool can be particularly useful since, 

unlike keywords, the constraint description is guaranteed to relate directly to the 

actual Template definition.

• By Generation History - A new Template is created by using an existing Template as 

a parent. The new Template inherits the constraints specified by the parent. This 

parent-child relationship presents a natural a tree-structured ordering o f a set of 

Templates, and it can be useful when searching the contents of a Template Library.

5.1.3 Environment Implementation

The efficacy of the ideas expressed regarding Template design and Library Tools 

were demonstrated by implementing a mechatronic system modeling environment, called 

the Model Builder (MB), that is based on Template concepts. In this environment the 

only pre-defined modeling type is the General Multiport, from which a set o f User- 

Defined Modeling Types can be generated. This feature makes it possible for the 

environment to be flexible and customizable, suiting the specific needs o f the user. It 

also provides the opportunity to exploit the environment as a teaching tool. Requiring 

students to thoughtfully create a new model type for a specific design would expose them

to a broader range o f modeling experiences.
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Another benefit o f this implementation is that it serves as a framework for future 

research efforts. The investment that is required to create a user-friendly, graphically 

driven, general-purpose environment for mechatronic systems modeling is significant. 

Much of this work does not involve research-specific issues and can be time consuming 

and tedious. Fortunately, now that a fundamental environment exists, it can be exploited 

and extended in new areas related to mechatronic systems modeling.

5.1.4 Controlled Access

A need for more sophisticated tools for limiting the ways in which models of 

mechatronic systems are viewed and modified was identified. In response to this need 

the concept of controlling the access to various model properties was proposed. This 

design represents a unique confluence o f three areas.

• Data Structures o f Mechatronic System Models - The attributes of the General 

Multiport were used as a basis for specifying the various access properties.

• Information Sharing - The need for sharing files between individuals jointly working 

on a modeling effort and the trend to make models available in a public setting 

motivated the concept o f  information sharing.

• Control o f Access to Data - Well-understood concepts associated with protecting data 

files stored on an operating system were used as the basis for controlling access to 

data.
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The ideas presented make it possible for a person who accesses a model to be 

classified into one o f several pre-defined groups. According to the specification of the 

model owner, each group can have a unique combination o f access permissions to various 

aspects o f a model. Permissions range from unfettered access, to read-only access, to no 

access.

The concept o f controlled access was demonstrated by implementing a design o f 

these features in the MB modeling environment. Controlled access was implemented 

after MB was completed according to the goals o f Template design. The implementation 

effort o f controlled access was relatively simple. This result supports the assertion that 

the MB environment can serve as a framework for future research.

5.2 Areas for Future Research

This section lists several areas that could be further investigated. The suggestions 

are divided into four groups. Section 5.2.1 presents ideas for tools related to the design 

of a Template. Library related suggestions are listed in 5.2.2. Issues relevant to the 

implementation environment are covered in Section 5.2.3. Topics regarding controlled 

access are given in 5.2.4.

5.2.1 Template Design

1) Enhanced General Multiport definition - The design o f the General Multiport 

presented here is useful for modeling a large class o f physical systems. However,
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there are other modeling structures that have been explored by others that should be 

incorporated in this design. Some o f these areas are discussed below.

a) Discrete variables - Many mechatronic systems designs are hybrid in nature, in 

the sense that they combine continuous and discrete variables (Elmqvist, et. al, 

1993). A system that uses a digital controller is a typical example. The General 

Multiport definition should support hybrid systems.

b) Discrete events - A related topic to discrete variables is discrete events, such as 

the opening or closing o f an electrical switch. Methods for handing discrete 

events have been proposed, (Kamopp, 1988; Lorenz, 1993), but further research 

in this general area is needed. However, ways to incorporate discrete events in 

the General Multiport definition should be explored.

c) Vector Ports - It can be helpful to represent a group of Ports as a data single 

structure. Many issues regarding this concept have been previously explored 

(Breedveld, 1985). This feature can greatly simplify both the way a model is 

displayed and the way in which the model is conceptualized.

2) Improved parent-child relationships for Templates - In the current implementation 

environment, when a child Template is derived from a parent, the inherited properties 

are passed on by essentially making a copy o f the inherited attributes and passing 

them on to the child. This scheme leads to a duplication of data. A more 

sophisticated implementation would exploit the relationship information as a 

mechanism o f inheritance; e.g., a child Template could refer to its parent to determine 

some o f its properties.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

3) Additional constraint definitions - In the current implementation, a set of constraints 

was defined that prescribe properties such as the number o f Ports, the direction of the 

Ports, the form o f the equations as a set, and the form o f individual equations. This 

set o f constraints can be used to define a set o f model types. However, it would be 

beneficial to investigate additional way in which to constrain the properties of a 

General Multiport, giving rise to more specialized behavior.

4) Additional types o f Templates - The Template ideas expressed in this dissertation 

were only discussed in relation to a General Multiport. However, the notion of a 

Template description for any modeling object is equally applicable. For example, it 

is possible to define Port Templates and Equation Templates. In fact, this idea was 

investigated and used in the MB modeling environment to some extent; a partial 

definition o f a Port Template was defined and exploited. However, a more thorough 

investigation is required.

5) Educational benefits - The concept of using constraints to prescribe a desired 

behavior o f a very general modeling construct is unique. However, it is a useful way 

to organize one's thinking about modeling in general. The potential benefits of 

presenting Template ideas in a learning environment should be more carefully 

explored.

5.2.2 Library Tools

1) Enhanced logical combination of filters - In the current implementation, a set of 

filters is chosen. For a Component in the library to match the filter, it must have all 

o f the keywords listed in the filter. This result can be thought of the logical "AND"
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combination o f  the items on the filter. Allowing for different logical combinations o f 

the filter items would make the search tools more flexible. For example, it would be 

useful to be able to specify a search for any Component that matches the keyword 

"Two Ports" OR "Transducer".

2) Keyword management - Currently, when a new template is created, a set o f keywords 

is associated with it. The keywords are used later as a searching tool to assist a user 

in finding a useful model. However, the searching benefit can be degraded if the 

keywords used to describe a given model are not carefully chosen. For example, 

suppose two modeling components that were defined were energy conserving. If one 

model was given the keyword "Conservative" and the other was given the keyword 

"Energy Conserving", searching efforts could be hampered.

One way to deal with this issue is to have a database o f keywords. When a user must 

decide upon the set o f keywords to associate with a model, the keywords must be 

chosen from the database. If  this scheme is used, then there must also be tools for 

managing the contents o f the keyword database. These ideas require additional 

thinking and effort and would be o f great value in a modeling environment.

3) Automated tools for sharing templates - In the current implementation o f the MB 

environment, automated modeling tools have been defined for creating and editing 

Templates. However, after a Template is created in one environment, there are no 

automated tools for exporting the template for use in another system. This area 

should be investigated to support this facility.
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4) Browsing model instances - The library browsing tools discussed in this document 

apply to a library of Templates. A useful feature would extend this ability to browse 

the contents o f model instances.

5.2.3 Implementation Environment

1) Improved visualization tools - Additional insight into a system model can be gained 

by using various visualization techniques, such as those discussed by Ermer (1994). 

Some possible extensions in the MB environment include 3-dimensional model 

representations and power flow animations o f simulation results.

2) Interface with other environments - The MB modeling environment provides tools for 

a subset o f Computer Aided Engineering. It would be useful to support dynamic 

interfacing with other major types o f CAE tools, such as finite element modeling 

tools. In this way the strengths o f  both environments can be exploited.

3) Compiled simulation code - In the current implementation, the equations of the 

system are ported to MATLAB as an "M-File" (Mathworks, 1999). While this 

approach is functional for smaller problems, it can increase simulation times greatly 

when models get larger.

5.2.4 Controlled Access

1) Provide for a finer level o f access control - In this dissertation, the principle o f 

controlled access that has been previously applied to files as a whole was extended to 

various features o f a multiport model. This extension gives a greater flexibility in
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specifying how an instance o f model should accessed. Applying access control 

concepts to even finer levels o f detail o f  a model can extend this basic concept even 

further. For example, instead of controlling access to an entire set o f equations 

associated with a Component, it might be useful to restrict access to a subset.

2) Controlled Access to Templates - The ideas of controlled access were applied 

instances o f models. The benefits o f  controlled access could also be exploited by 

controlling the access to Templates.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

APPENDIX

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

APPENDIX 

IMPLEMENTATION DETAILS

The Model Builder Environment that was developed as part o f this research effort 

consists o f over 55,000 lines of code, expressed in over 100 files and nearly 95 classes. 

Due to the scope o f this project, it was not deemed useful to present a verbatim listing o f 

the code text. Instead, this appendix presents an overview o f the implementation and 

directions for understanding the code structure. The information presented here, intended 

as a guide to assist future development, is given in two major categories. First, the 

organization o f the major C++ classes that define the MB environment are presented. 

The class diagrams follow the Object Modeling Technique (OMT) described by 

Rumbaugh et. al. (1991). Second, the name and general purpose of the major text files 

that are used to create the MB environment are given.

Class Structure

The Object Modeling Technique was developed in an attempt to create a standard 

for communicating an abstract description o f code structure based on object-oriented 

programming paradigms. These ideas are not related to any particular object-oriented 

programming language. However, since MB was developed in C++, the OMT notation 

will be discussed in terms specific to this language.

Using the OMT, squares represent a C++ class. Lines connecting two classes 

indicate a relationship between the classes. The precise nature o f each relationship
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depends on the classes involved in the relationship. An Annotation at one end of a 

relationship line indicates the role that the class plays in the relationship. A circle at one 

end of the relationship indicates that multiple class instances may participate in the 

relationship. The relationships are generally implemented using object pointers. A 

triangle indicates a parent-child relationship exists between two classes. For a more 

complete description of the notation used, consult Rumbaugh, et. al. (1991).

An Object Diagram, representing relationships between the major classes in the 

Model Builder environment, is shown in Figure 421. A general class for describing 

objects that are stored in a model or a graph is the CGraphObject class. This class is an 

abstract class that defines data common to objects that might be contained in a model. 

There are no direct instantiations o f this class. Four classes are derived from the 

CGraphObject class, CComponent, CPort, CConnector, and CLabel. The CComponent 

class is further derived into the CCompMacro class, for Macro Components, and the 

CCompAtom class for Atom Components. The CCompMacro class stores a list of 

pointers to other CGraphObjects. Each CCompMacro may display its objects in a 

window created from the CMBView class. The CComponent class is associated with a 

CTmpClass, which store Template information for a Component. A parallel structure 

exists for Ports, although the Port Template ideas are not fully exploited at this point.

1 The names o f two model properties changed from the time the code was originally generated to the lime 

this document was prepared. In the code Subgraph Components are called Macro Components, and Core 

Components are called Atom Components. The original names are used in this section.
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Figure 42. The MB Object Diagram.

The CMainFrame class is used to store application specific data, i.e., data that 

does not depend on the current model. MB has a Multiple Document Interface (MDI), 

meaning that more than one model file can be opened at one time. This structure is 

supported by having multiple CMBDoc classes related to the CMainFrame class. Each 

CMBDoc stores and manages data specific to a model file. The most important 

information stored in the CMBDoc class is a pointer to the "top" CCompMacro. Each
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CMBDoc class stores exactly one CCompMacro. The CMainFrame class also stores a 

list ofCTmpComp and CTmpPort classes.

A set of tools for operating on the contents of a model are associated with the 

CMainFrame class: the abstract class CTool and its derived classes, CToolSelect, 

CToolDelete, CToolConnect, and CToolAdd. These classes group tasks for carrying out 

actions to manipulate the contents o f a model or graph.

The tools to support Controlled Access are contained in the two classes 

CAccessGroup and CAccessSetting. Each instance o f the CMBDoc class stores a set of 

pointers to CAccessGroup classes. The CAccessGroup class stores a list o f strings that 

represent the users that belong to it. The CAccessSetting stores an access value and a 

pointer to a CAccessGroup. This information is used to define restrictions to accessing 

the attributes of various other classes. CAccessSetting classes are associated with the 

CMBDoc class, to control access to model files, and to the CGraphObject class. Classes 

derived from CGraphObject must implement their own functions to support Controlled 

Access. The CCompMacro class implements Controlled Access for its contents and the 

CCompAtom class implements Controlled Access for its Equations.

File Structure

The above class structure was realized in a set o f C++ class definitions, contained 

in text files. The main files used in the MB environment and a brief description o f their 

contents is given in this section.
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Table 4. Major Files Used for Creating the MB Environment.

File Contents

MBClasses .h. Headers for most of the classes used in MB.

Components. cpp CGraphObject CComponent, CCompAtom, and 
CCompMacro class definitions.

GraphObjects.cpp CPort, CConnector, and CLabel class definitions.

MainFrame.cpp CMainFrame class definition.

MBDoc.cpp CMBDoc class definition.

MBView.cpp CMBView class definition.

Templates.cpp CTmpComp and CTmpPort class definitions.

EditTools.cpp CTool, CToolSelect CTool Connect, and CTooIAdd class 
definitions.

Equation.cpp Class definitions for defining and manipulating equations.

Constraint.cpp Class definitions used to specify and evaluate constraints.

Access.cpp CAccessGroup and CAccessSetting class definitions.

PSTmpComp.h Headers for the classes used in the Template 
creating/editing wizard.Common.cpp A set o f general purpose, global functions.
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