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ABSTRACT

COMPUTER AIDED ENGINEERING TOOLS FOR
STRUCTURED MODELING OF MECHATRONIC SYSTENS

By

Michael Keith Hales

Industry is continually faced with pressures to develop improved products while
decreasing design-cycle times. Complex designs of mechatronic systems, which
incorporate modeling elements from multiple engineering domains and embedded control
subsystems, can be particularly challenging. Computer Aided Engineering tools, such as
mathematical modeling, have proven useful because they allow engineers to consider
more design alternatives in shorter amounts of time. As part of the mathematical
modeling effort, considerable resources can be dedicated to creating a new model for a
particular purpose. Tools that help ease the burden of new model development and

directly support mechatronic modeling are therefore of particular importance.

Structured, reusable mathematical models of common engineering components
help to simplify the initial modeling task, to capture engineering knowledge for use in
future projects, and to support group model development efforts. Many difficult issues
are associated with implementing a structured modeling approach. A structured
modeling framework that can accurately and simply represent systems of interest is
needed. A flexible modeling environment for modifying model properties, while

ensuring that models are not altered in ways that are inconsistent with the original design
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intent should be developed. When many models have been defined and collected in a
library, methods for efficiently locating models that are useful for a particular purpose
become increasingly important. The desire to share models among various groups raises

the issue of model security.

Research was conducted to investigate ways to address the above issues. As a
result of this effort, a new modeling construct, the Multiport Template, was defined. The
Multiport Template simplifies the creation of flexible, reusable models of mechatronic
components and systems, helps ensure consistent model modification, leads to a natural,
meaningful classification and ordering of models, and supports muitiple library searching
methods. Additional data constructs, used in conjunction with the Multiport Tempiate,

provide control of access to various model properties by different types of users.

The usefulness of the Multiport Template design was demonstrated by
implementation of a particular modeling environment. Examples are presented that
demonstrate how the modeling tools developed allow for completion of tasks that were

not previously possible.
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CHAPTER 1
INTRODUCTION

1.1 Background

Engineers have come to rely on computers to complete an increasing number of
tasks. During the course of a day, it would not be unusual for an engineer to use a
computer to perform a numerical analysis, communicate with a colleague through email,
search the Internet for crucial engineering data, and work on a technical document.
However, despite the many ways in which computers can enhance the engineering effort,
it is somewhat astonishing to note that there is a tremendous gap between the way
computers fundamentally operate (the binary state of a set of electrical switches) and the
way humans naturally think (spatial relationships, physical images, abstract reasoning,
etc.). Computers are useful because of efforts to bridge this gap. What are some of the
ways in which computers are made more useful? An answer to this question can lead to

directions of future efforts to further increase the usefulness of computers.

Initially, computers became more useful by teaching humans to think like
computers. This result involved humans learning rather cryptic computer languages, like
Assembly, to perform low-level tasks, such as "moving" and "pushing" variable values
around in computer memory. This demanding approach requires large amounts of time
from highly skilled individuals (computer programmers). Even simple tasks can involve

complex instructions to the computer.
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Another way computers can become more useful is to "teach” computers to think
more like humans (Dertouzos, 1997). An early advancement in this area was the
development of the FORTRAN computer language (ANSI, 1966). FORTRAN improves
the way humans communicate with computers in several ways. One improvement comes
from the definition of data structures that support commonly used ideas and concepts.
For example, FORTRAN supports many different variables types, such as character
strings, integers, and complex numbers. Another improvement is in the specification of a
more "human-like", natural syntax for instructing the computer to complete common
computer tasks. This feature is helpful because it reduces programming efforts and
makes it easier to remember commands. Another improvement comes from an
organization of data into meaningful groupings. For example, code for performing a
common task can be grouped in a subroutine. This ability helps to simplify computer
instructions and also makes it possible to reuse a given set of instructions in multiple

contexts.

Two observations of the above discussion are important to consider. The first
observation is that the existence of FORTRAN does not change the fundamental
computing ability of computers. Put another way, any set of computer instructions
written in FORTRAN could also be written in Assembly. If this statement is true, then
what is the added value of creating improved data structures, syntax, and organization?
The second observation addresses this question: the benefit is that the way computers are

instructed to perform a given task is brought into closer conformity with the way humans
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reason about performing that task. This benefit results in a decreased investment of time

and greatly improves productivity.

The trend to simplify the way computers are instructed has continued. Object-
oriented programming languages like C++ (ISO, 1998) have been developed. These
languages have data structures, syntax, and an organization that more naturally reflect the
ways humans reason about the world (Pressman, 1992). Computer operating systems
have evolved from text based, command-line driven tools to graphical, mouse-driven
interfaces. = Fewer people use computer languages directly. Instead, computer
programmers use the computer languages to create computer software to perform specific
tasks. Tasks that are cumbersome to complete using a computer language are almost
trivially performed using a computer program. For example, using FORTRAN to
generate a finite element mesh for a complex, 3-dimensional object, is a formidable
undertaking. However, programs like ANSYS (Swanson Analysis Systems, Inc., 1998)
can be used to perform this task at the click of a button. For each of these advancements,
the above observations apply, i.e., communication with computers is simplified, but

fundamental computing power is not increased.

Computer software, therefore, can enhance the engineering effort by bringing the
performance of the computer more in line with human thought and by reducing the
computer-specific knowledge that is required to solve engineering problems. The general
area in engineering that uses computer tools for this purpose is often referred to as

Computer Aided Engineering (CAE). The general purpose of this dissertation is to
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explore ways in which to enhance engineering efforts through improved CAE tools. The
approach followed is similar to the trend previously outlined. Enhancements will be
sought by searching for ways in which new data structures, problem representations, and

information organization can be exploited.

1.2 Area of Research and Scope

CAE covers a broad class of tools for many different engineering applications.
The research described in this document will focus on computer support for one area of
increasing engineering interest, the dynamic behavior of mechatronic systems. As
opposed to a static response, a dynamic response is one in which relevant system
parameters significantly evolve over a time period of interest (Umez-Eronini, 1999).
Whether a system is considered dynamic or not is a subjective decision and depends on
engineering judgement and operating conditions (Stein and Rosenberg, 1991). For
example, an automobile's rack-and-pinion steering system may be treated as a static
system when evaluating its response under freeway driving conditions, but it may be

considered a dynamic system when evaluating its response during a high-speed race.

Mechatronics is a relatively new term with somewhat varying definitions
(Auslander, 1996; Comerford, 1994; Buur, 1992); however, common ideas have
emerged. In this dissertation, a mechatronic system will be defined as one that has two

general features:
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1) it is composed of components from multiple engineering domains, such as
mechanical, electrical, hydraulic, acoustic, thermal, and magnetic; and

2) it has integrated automatic control subsystems as an inherent part of its design.

There are many areas in which computers can support an investigation into the
dynamic response of a mechatronic system. One area is system representation. [nitially,
a model of a system to be investigated must be constructed. The model could take one of
many forms, including a set of mathematical equations, a qualitative description of how
the system behaves, or a physical description of the model's properties. Another area is
system transformation. For example, at some point a model must be transformed into a
representation that is suitable for numerical simulation. The numerical simulation itself
is another area. There are many algorithms for performing numerical simulations, and a

variety of strategies for selecting a suitable algorithm.

The research described in this document deals primarily with creating and
working with model representations. These issues related to these topics are addressed

in more specific detail in the next section.

1.3 Research Issues

Mathematical modeling of mechatronic systems and the corresponding computer
tools that support it generally have been successful in supporting mechatronic system
design. "Virtual prototyping” can decrease the need for physical prototyping and thus

reduce design cycle time and design development costs. However, there are constant

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



pressures in industry to further decrease design cycle times, reduce development costs,
and consider increasingly complex designs. Also, the large resource investments, in
terms of time and money, that are used to create models for a specific modeling purposes
are, unfortunately, not always available to use in future efforts. These observations
indicate a need for improved modeling tools that make the model building process as
easy and efficient as possible and support model reuse. In general terms, an improvement
in computer tools can improve productivity (Gibbs, 1997). An improved modeling
environment that decreases the modeling effort benefits both industry and academia.
Simplified modeling tools reduce the learning overhead and allow those using the tools to

focus on more relevant modeling issues.

Another issue in mechatronic systems modeling is the inherent multidisciplinary
nature of mechatronic systems. One class of modeling software is based on fixed
input/output information flow, a subset of which is block diagrams. Simulink
(MathWorks, 1999), SystemBuild (Integrated Systems, Inc., 1994), and Easy5 (Boeing,
1998) are typical examples. These types of software are widely used in both academia
and industry. However, Otter and Cellier (1996) discuss why these modeling constructs,
while quite useful for controller design, are not the best-suited tools for modeling
physical systems, despite assertions to the contrary (Fritchman and Hammond, 1993;
MathWorks, 1998). One reason supporting this assertion is that the fixed input/output
nature of block diagrams deters model reuse, since a component model's input/output
structure may depend on its use in a particular system. This weakness can be especially

troubling in a large, hierarchical model. Another reason is that the representation of
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component models can be confusing since interactions are limited only to signals. A
third reason is that there are no general tools for working with transducer components.
Cellier (1992a) indicates that a more appropriate modeling approach would include
power-based interactions, enabling descriptions of physical components that are much
closer to reality. The use of power-based interactions also helps a modeler to avoid some

common modeling errors by enforcing conservation of energy laws.

Due to these reasons specified above, modeling data structures intended to
support mechatronic systems modeling should support both data and power flows. Some
examples of previously defined tools that are specifically designed for systems composed
of components from multiple power domains are bond graphs (Karnopp, et. al, 1991),
object diagrams (Otter, 1997), SIDOPS+ (Bruenese and Broenink, 1997), and Modelica
(Mattson and Elmqvist, 1998). These tools are finding increased attention and
acceptance as is evidenced by computer software that is based on these tools, such as
ENPORT (Rosencode Associates, Inc., 1995), 20Sim (Controllab Product, 1998),

Dymola (Dynasim, 1999), and AMESim (IMAGINE, 1996).

Another modeling issue involves the support provided for model reuse. Currently,
many modeling environments support component model reuse by supplying a set of pre-
defined model types, contained in a fixed library. A weakness of pre-defined model
types arises when one wishes to modify certain properties of a component based on that
type. The ways in which a model's properties are modified can be quite limited. Often

the only properties that can be changed are the model's connectivity and parameter
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values. If a pre-defined model that precisely matches the current needs cannot be found,
then a new model must be generated from scratch. A good modeling environment should

support increased editing capabilities of library components.

In another effort to support model reuse, a modeling environment may provide
support for a specialized model definition, referred to here as User-Defined Model Types
(UDMTs). This approach allows a user to define a new model type, in a way similar to a
modeling environment supplying pre-defined types. In many cases, UDMTs are defined
using.a fixed-form, programmatically specified data structure. These types of tools
require knowledge of highly-specialized data constructs and can be quite complex. Also,
once a new UDMT is created, it can suffer from the same problems associated with pre-
defined model components, namely that modification of model properties is limited and
organization and browsing tools have limited support. On the other hand, some modeling
environments allow for essentially unlimited modification of modeling components that
are based on UDMTs. This feature provides increased flexibility to modify an existing
model in a library to meet a new need, but it doesn't prohibit the model from being

altered in ways that are inconsistent with its original design.

Engineering model libraries may come to include a large number of models, each
designed for a very specific purpose. As the number of pre-defined modeling types in the
library grows, searching through the library contents to find a useful model for a current

modeling purpose becomes increasingly difficult. To address this issue, a design
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environment should support simplified, efficient tools for organizing and browsing the

contents of a component model library.

A final modeling issue considered in this research involves the problems
associated with sharing component models that contain data requiring restricted access.
Such a situation can arise when two companies must share model information to
accomplish a systems design. Some information included in the model may be
proprietary to one of the companies. This situation can also arise in an academic setting
when an instructor prepares a model for student investigation. Perhaps students should
have the ability to use the model to determine its behavior, but not to view its properties.
A simple approach to controlling the access to a model's properties is to "lock up" the
entire model. This approach might be accomplished using file access control properties
supplied with some operating systems. However, such an approach can lead to a design
that is far from optimal, since the control of access to the model details is limited to the
model as a whole. Therefore tools should be provided that allow an owner of a model to
make available to a model user some of the model details, according to the user's
classification. Such a feature allows for varying levels of security regarding both reading

and modifying model details.

1.4 Research Objectives

The principal objective of this research is to design data structures, formulate new
concepts, and organize existing information that results in significant enhancements to

modeling environments for mechatronic systems. This design addresses the issues

9
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discussed in the previous section. Specifically, the work will be divided into three areas
relating to modeling of mechatronic components and systems:
1) creating and correctly modifying models and model types of mechatronic
components and systems,
2) organizing and browsing the contents of a library of mechatronic model types,
and
3) controlling the access to details of models of mechatronic components and

systems.

Another objective of this research is to demonstrate the efficacy of the design
through a computer implementation. The implementation shows that the issues raised in
the previous section are addressed, and that the proposed design improves modeling

environments for mechatronic systems.

1.5 Dissertation Organization

The remainder of this dissertation is contained in four chapters. Their contents

are described briefly in this section.

Issues related to the design of modeling environment for mechatronic systems and
components are covered in CHAPTER 2. A general purpose modeling structure for
supporting modeling of mechatronic systems and components is defined. This data
structure is called a General Multiport. Using this data structure, a novel, template-based

approach for creating User-Defined Model Types is presented. It is shown how the tools

10
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improve the way in which UDMTs are used and defined. The benefits also extend to
providing enhanced methods for classifying and browsing the contents of a set of
UDMTs stored in a library. A modeling environment implementation for mechatronic

systems that is based on these ideas is presented in CHAPTER 3.

In CHAPTER 4 a design is presented which supports the control of access to
various model properties of mechatronic components and systems. An implementation of

the design is presented and its usefulness is illustrated with two examples.
A summary and conclusions are given in CHAPTER 5 along with a set of
recommendations for future research in this area. The appendix gives a brief description

of the implementation of the modeling environment. This document concludes with a list

of references that were useful in carrying out this research.

11
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CHAPTER 2
DESIGN OF A MODELING ENVIRONMENT

2.1 Introduction

As was discussed in CHAPTER 1, there is a need for enhanced modeling tools
that decrease the burden of creating models of mechatronic systems. One strategy that
has been successfully employed in the past is the use of a modeling structure that will be
referred to as a User-Defined Model Type (UDMT). To understand what a UDMT is, it is
helpful to first consider the more common modeling structure, a Pre-Defined Model Type
(PDMT). PDMTs are basic modeling components that are specific to a modeling
environment. Their fundamental definition cannot be changed; only particular attributes
can be changed. As an example, consider a modeling environment that provides a pre-
defined model of a common component, a scalar Gain Block. To use a Gain Block
model in a system, the user creates a model instance, as shown in Figure 1. The only
modifications that can be made to the instance are how it is connected in the system and
the value of its gain parameter. This behavior, or what makes the Gain Block "act" like a
Gain Block, is intrinsically defined as part of the modeling environment and cannot be

changed; the Gain Block definition is fixed.

12
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Figure 1. A Scalar Gain Block.

The use of PDMTs has been useful in the support of mechatronic systems
modeling. In some environments, there is no other option for building a system model
than to use the PDMTs that are supplied with the environment. In these cases, the
flexibility and customizability of the environment is limited. No new modeling types can
be defined without a re-definition of the environment. In response to this issue, some
modeling environments provide a more general modeling structure that allows a user to

not only create model instances, but to also create User-Defined Model Types.

It can be confusing to understand some of the issues regarding UDMTs. One
reason for this difficulty is that when dealing with model types, a more abstract way of
thinking is required. Therefore, before proceeding, it is important that the fundamental
distinction between model fypes and model instances be clearly understood. One way to
describe the fundamental difference is as follows: model instances describe the
properties of physical systems and model types describe the properties of model
instances. Stated another way, model instances are based on model types. A simple
example will help to demonstrate this point. Figure 2 shows three different areas that
may be of concern when creating a system model: (a) the physical system being studied,

13
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(b) a system model, and (c) a set of model types. The model in (b) is a representation of
the system shown in (a). It is composed of a set of component model instances. The
intent of the system model is to describe relevant behavior of the physical system. There

is a direct relationship between the model instances and the component or property of the

physical system which they represent.

Mass

Rigid
Connector

Spring

Dashpot

Ground

(a) Physical System (b) System Model (c) Model Tyvpes

Figure 2. Three Areas Related to Modeling.

In a similar relationship, the model types in (c) are general descriptions of the
component models specified in (b). The intent of a model type is to describe the behavior
of its corresponding modeling instance. A single model type description is related to
multiple model instances. For example, there are two spring models, but only one spring

type. Each instance of the spring model maintains some data that is unique (e.g. the

14
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stiffness value). The spring type maintains data that is common among all spring

instances (e.g. the fact that there are only two connection points).

2.1.1 Design Considerations for a Modeling Environment

It is desirable for a modeling environment to support User-Defined Model Types
(UDMTs) for storage in a model library. UDMTs provide a means to customize the
modeling environment with the models that are most useful. Model generation time is
decreased because, instead of starting from scratch each time a new system is to be
modeled, an engineer can browse a library of existing UDMTs for ones that most closely
meet current needs. UDMTs also serve as a repository of modeling knowledge; efforts
and knowledge used to solve previous problems become resources available for solving

future problems.

There are many difficult issues related to using and developing UDMTs. A good
definition of a UDMT allows for sufficient detail to capture desired behavior while being
flexible enough to allow for future modification, thus providing specialization for a
particular purpose. The amount of flexibility in modifying properties a user should have
when working with an instance of a UDMT is not universally agreed upon. Current
implementations tend to fall at one of two ends of a spectrum. At one end, allowed
modifications are quite limited. In many environments the only allowed modification is
the setting of parameter values; meanwhile the underlying equations remain invariant.
This scheme helps to ensure that a UDMT instance won't be modified in ways

inconsistent with its intended use. However, it severely restricts the useful forms that it
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can take. Since a model is an approximation of reality, there are generally many possible
forms any given model may take. It therefore becomes necessary to store multiple,

closely-related model forms of any given component model.

At the other end of the spectrum, modifications of the properties of a UDMT
instance are relatively unlimited. This philosophy gives more flexibility when using a
UDMT, usually at considerable effort in defining a new instance. In addition, it may
mean that models can be changed in ways that are inconsistent with original intentions.
Figure 3 illustrates how this philosophy can lead to an improperly modified model. A
default bond graph, 1-Port C-Type is shown in part (a). Since the general form of a bond
graph C-Type allows multiple equation forms, these equations should be accessible to the
user. However, the lack of constraints on how these equations can be modified can lead
to an improper modification, as shown in Figure 3(b) where the function relationship e =
feC is more appropriate for a purely energy dissipating component, like a bond graph R-

Type (Karnopp, et. al., 1990).

—c] el
U

U

q=/fdt q=/fdt
e=¢q/C e=f-C
(a) Default (b) Improperly
Modified

Figure 3. Improperly Modified Bond Graph, 1-Port, C-Type.
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Another difficult issue in working with UDMTs arises when one wants to create a
new UDMT. This task generally involves learning a specialized modeling language or
set of function calls. Also, it is often necessary to start with a "blank slate" every time a
new UDMT is needed, even if the new model type is only slightly different from an

existing one.

A third issue involves the classification of UDMTs. When a large number of
UDMTs have been defined, a clear and convenient ordering and a method for finding a
model with desirable characteristics are imperative. Most commonly, model
classification tools are limited to grouping model types according to model purpose or
functionality. While this method can be effective, it has two weaknesses. The first
weakness is that the location of a particular model type is a somewhat subjective
decision. Two people may desire to place a given model in two different groups. The
second weakness is that the method relies on models being assigned to "correct” groups.
If a model is placed in an improper location, it could be hard to find, or worse, give an

incorrect impression of the model's purpose.

2.1.2 Previous Work

The concept of using UDMTs to extend a modeling environment has been
exploited previously by others, although the ideas have not been expressed in the fashion
presented here. This section presents the conceptual ideas that have been explored by
others in relation to this work. A more specific description of implementation details of

some other groups is given in section 3.1.1.
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Previous implementations of UDMTs specify a set of model properties. Instances
based on a UDMT initially have the same attributes as specified by the UDMT definition.
The type and manner of modifications that can be made to model instances are fixed; i.e.,
they are part of the UDMT definition. For example, in the Simulink modeling
environment (MathWorks, 1999) model instances created from UDMT definitions only
allow for modification of model parameter values. There is no way to extend the
environment's ability to modify equations or to specify the way the parameters values are
set. In the modeling environment 20Sim (Controllab Products, 1999) additional
properties of a model instance can be modified (e.g., the model's equations), but which
properties can and cannot be modified is not controlled by the creator of the UDMT, but

is a function of the modeling environment.

Using a UDMT definition to prescribe the manner in which properties of a model
can be modified has been suggested.. However, current thinking is limited. Thus far the
only application has been to specify valid ranges of parameter and variable values, as in
the SIDOPS+ modeling language definition (Bruenese, 1996). Extension to other model

properties has not been previously explored.

Vries et. al. (1994, 1993) have explored methods for structuring of a set of model
types. In their work they divide the properties of a UDMT into two categories, the fype
specification or type interface and the implementation. Properties that are classified in

the type category are inherited when a new UDMT is derived from an existing one.
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Implementation properties are not inherited. This strategy allows for an ordering of a set
of UDMTs in a "class" or type structure. A similar approach is taken in the Modelica
modeling language (Modelica, 1999; Mattson, et. al., 1998). However, this manner of
inheriting properties is limited in that once a set of properties has been specified as part of
the type interface, then all derived models have the same type interface. In Simulink
there is no notion of structuring a set of models. Each UDMT is a unique entity with no

relationship to any other UDMT.

2.1.3 Approach

To address the issues raised above, a new environment for describing User-
Defined Model Types of mechatronic components was designed. This design improves
the ways in which UDMTs are defined, created, and classified. This goal is
accomplished with a new modeling structure, the Multiport Template. A Multiport
Template is a combination of three items:

1) a modeling structure called a General Multiport,
2) constraints that specify the range of properties that the UDMT can have and that
bound the values the properties can assume, and

3) default property values.

A Multiport Template (hereafter referred to as a Template) is used as the basis for
creating instances of component models, prescribes the way an instance's properties can
modified, serves as a basis for deriving new Templates, and provides a mechanism for

classifying Types based on functionality.
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Section 2.2 describes the properties of a General Multiport. The Template design
is given in Section 2.3. The usefulness and effectiveness of the design is demonstrated

by two examples in Section 2.4.

2.2 Definition of a General Multiport

The definition of a fundamental modeling construct developed as part of this
research is presented in this section. The data structure, called a General Multiport,
establishes the range of models that can be defined by any instance of a Template. While
this definition provides a foundation for building models that represent many types of
dynamic systems, it is not meant to be all-inclusive. Also, many of these ideas have been
studied and expressed in various formats by others. For example, power-based modeling
ideas in the form of bond graphs were initially introduced by Paynter (1961) and later
further explored and defined others (Breedveld, 1985; Cellier, 1991, Karnopp, et. al.
1991). Other general purpose, power-based modeling constructs have been defined that
attempt to further expand the functionality of these tools (Rosenberg, et. al, 1996; Otter
and Cellier, 1997; Elmqvist, et. al., 1998). Concepts related to hierarchical model
representations have also been explored (Cellier, 1992b; Hales, 1995). However, the
design presented here has additional features not previously considered. For example, no
references have been found to indicate work done on specifying properties of a modeling
structure that would ensure correct UDMT reuse and to allow for model classification

schemes based on functionality.
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It is convenient to divide the definition of the General Multiport into four
categories. The Topological Properties are described in Section 2.2.1. Parametric
properties are discussed in Section 2.2.2. Functional properties are presented in

Section2.2.3. Display properties are described in Section 2.2.4.

2.2.1 Topological Properties

The fundamental modeling entity in this system is referred to as a Component.
Figure 4 shows a representation of a General Multiport Component, illustrating many of
its properties that will be elaborated on in this and subsequent subsections. A Component
can represent a physical object, like a shock absorber, or an effect, like mechanical
friction. Components are classified as either open, meaning that they can be connected to
other Components, or closed, meaning that they cannot be connected to other

Components. A closed Component is given the special designator of System.

Ports are directly associated with Components. A Port indicates a site for
connection between Components. Ports can be physically meaningful, like a shaft on a
flywheel, or functional, like an input signal to a transfer function. Open Components
have one or more Ports; closed Components have no Ports. A pair of Ports is associated

by a Connector, thus connecting the two associated Components.
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Figure 4. A General Multiport.
2.2.2 Parametric Properties

It is often useful to define a set of Parameters for modeling convenience.
Parameters may point to physically meaningful attributes, such as material properties or
geometric dimensions. It is also useful to define common symbolic constants, such 7. In
this definition a Parameter's value does not change during the course of a simulation,
although it may be changed between simulation runs. Although Parameters are
ultimately used in Equations, that relationship is not important at this level. This
distinction is meaningful because System Components, which have no Equations, may

have a set of Parameters.

A Parameter can be associated with a Multiport in several different ways,
depending on its intended use. A Parameter associated with a System is considered
"global" and is accessible to any Component that is contained in the System. The density
of hydraulic fluid is an example of a System Parameter. On occasion it is desirable to
have a Parameter that is only accessible to a subset of a model's Components. In this

case, a Parameter should be associated with a Subsystem Component. When a Parameter
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should only be accessible to a single Component, then the Parameter should be associated

with a Core Component.

2.2.3 Functional Properties

There are several aspects to the functional properties of a General Multiport. Port

Variables, Internal Variables, and Equations are described in this section.

2.2.3.1 Port Variables

The Ports on a Component also serve a functional purpose. Ports have one or
more Port Variables directly associated with them. Port Variables are dynamic; that is,

they are functions of time.

Ports have one of two directions: /n (towards the Component) or Out (away from
the Component). The interpretation of the Port direction depends on the Port Type. A
Port's Type classification is based on its Port Variables. A single Component can have
multiple Ports of any Port Type associated with it. Currently, two Port Types have been

defined, which will be discussed below.
A Signal Port Type has exactly one Port Variable. If the Port is directed In, then

the Variable is a functional input; otherwise, it is a functional output. For example, a

Block Diagram Sum Block has one or more In Ports and exactly one Out Port.
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A Power Port Type has two Port Variables associated with it. The product of a
Power Port's Variables represents a power flow. For example, a shaft Port's Variables are
torque and angular velocity. The direction of a Power Port shows the positive direction

of energy transfer.

One of a Power Port's Variables is used as a functional input and the other as a
functional output. Which Port Variable is used as the input and which Variable is used as
the output at a Power Port depends on the Port's Causality. Causality may be "fixed" or it
may be dependent on the system assembly. For example, a model of an electric battery
might have one Port with fixed Causality specifying the voltage is always a functional
output. On the other hand, the Power Port of a model of an electrical resistor could have
either voltage or current as a functional output, depending on how it is connected in a

system model.

Additional Port Types and properties have previously been defined and studied
and will not be elaborated upon here (Breunese, 1996; van Dijk, 1994). However, this

design does not preclude future definition of other Port Types and properties.

For two Ports to be connected, they must at least have the same Type and
complementary directions; i.e., one Port must be In and the other Out. A Port connection
indicates that the corresponding Port Variables are directly coupled. The functional role
of the Port Variables must also be complementary; i.e., Variables used as functional

inputs on one Port must be functional outputs of the other Port.
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2.2.3.2 Internal Variables

Internal Variables are Variables that are defined locally to a Component. As the
name implies, the values associated with Internal Variables are not accessible to other
Components, and their values can change over time. They are primarily used for
convenience. For example, an intermediate computation may be assigned to an Internal

Variable.

2.2.3.3 Equations

Equations are mathematical expressions consisting of Constants, Parameters, Port
Variables and Internal Variables.  Equations may be expressed in traditional
mathematical form (e.g., algebraic and differential) or expressed as logic statements and

procedures (e.g., if~then statements and loops).

Components ccme in two varieties, Subsystem and Core, as illustrated in Figure S.
Core Components are open, are directly associated with Equations, and are structurally
irreducible. Subsystem Components are open and have a connected assembly of other
Components, supporting hierarchical model descriptions. Subsystem Components have
implied equations, derivable from their contained Core Components. Whether a
Component is created as a Subsystem or a Core depends on modeling judgement. For
example, a model of a DC motor could be represented either by an assembly of
Components such as a resistor, inductor, inertia, etc., or by a stack of Equations.
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Figure S. Two Types of Multiport Components.

An important characteristic of mathematical equations in this system -is that they
are in symbolic form. This feature is important for supporting reusable models (Cellier
and Elmqvist, 1993). One reason this statement is true is that, using the connection
scheme defined above, symbolic equations are required to accommodate Components
that have system-dependent causality. That is, an equation may need to be inverted so
that the functional output variable is explicitly calculated. For other connection schemes,

it is possible to avoid equation reformulation, as was demonstrated by Byam (1999).

The data structure defined here makes it possible to specify an equation as having
a fixed input/output form. An additional restriction on equations is that the output Port

Variables must be computable for any legal causal configuration.

2.2.4 Display Properties

A Multiport's display properties include Icon, Name, and Keywords. These
properties serve as mnemonics to quickly and conveniently locate, refer to, and classify
models. It is important that the ideas implied by a model's display properties are
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consistent with its actual definition. For example, a model named "Spring" with an Icon
that looks like a spring should have other properties (Ports, Equations, Variables,...) that
are consistently defined. Or, if the keyword "linear" is associated with a model, then the
Equations should indeed be linear. Consistency between the Display and other model
properties is important because the Display is often heavily relied upon when one is

trying to understand or to explain the purpose of a model.

A good implementation that relies on display properties can be useful when
browsing or searching the contents of a large library. For example, if models with similar
purposes are grouped according to Keywords, then finding a model for a particular
purpose at hand can be greatly simplified (Bruenese et. al., 1998, OLMECO, 1991).
Finally, the Icon serves a practical role in a Graphical User Interface (GUT) for

identifying, manipulating, and editing a model's properties.

2.3 Templates

Now that a useful modeling structure has been defined, how this information is
used when working with User-Defined Model Types will be discussed. There are two
general ways to work with a UDMT, depending on the task at hand: 1) creating instances
and using them to build a model, and 2) defining and classifying new UDMTs. This

section will discuss these two activities and describe the role of Templates.
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2.3.1 Working With Instances and Templates

Figure 6 shows the relationship between an Instance based on a Template, a
Template, and a User. A model is composed of an assembly of Instances. An Instance is
a unique modeling object that is a realization of a configuration of some of the properties
of the General Multiport. An Instance is created for a specific modeling purpose, such as
for modeling a specific pump. Initially the attributes of the Instance are solely derived
from the Template. User input is then used to specialize the properties of the Instance,
such as specifying the pump displacement constant. Multiple Instances can be created

from a single Template and each Instance maintains its own attribute data.

< Tune
New Derive Existing
User Template € ~-~--- Template

Figure 6. Working with an Instance and Template.

Interactions with an instance can be classified into two categories, viewing and
modifying. It is significant that there are some properties of an Instance that can be
examined by the user, but not modified. Also there are limits on how some properties
can be modified. The mechanism for moderating modification of property values is the
Instance Interface. All interactions between a User and an Instance must occur through

this interface.
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The key element in this arrangement is the Template. A Template is used to
create Instances and specify how Instances can be modified. A Template accomplishes
the goal by coordinating three sets of data.

(1) The General Mudltiport Definition. All Templates are based on this definition, which
bounds the range of models that can be defined using a Template.

(2) Constraints. A Template lists a set of Constraints that are used to specify which
properties of the General Multiport can be assumed by an Instance and limits the
values that properties may assume. Stated another way, Constraints are used to
further bound the properties that an Instance may assume. If a Template did not
contain any Constraints, then it would be possible to define an Instance using any
configuration defined by the General Multiport.

(3) Default Property Values. A Template defines a default configuration of model

properties for an Instance.

The unique feature in this design is the use of Constraints to specify a UDMT's
properties. This method is different from other implementations of UDMTs, which only
specify a set of properties. Constraint data is used to modify the behavior of the Interface
Editor. When editing the properties of an Instance, the Editor is "tuned" according to the
specified Constraints listed in the Template. In this way it becomes possible to create

User-Defined Model Types that are edited correctly by all users of the model.
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A brief example will help to illustrate these ideas. Consider again the 1-Port C-
Component shown in Figure 3 and the three aspects of a Template discussed above that

would be needed to define this Model Type.

General Multiport Definition

The constructs of the General Multiport Definition described in Section 2.2 are

sufficient to support the definition of a 1-Port C-Component.

Constraints

The following statements prescribe the way instances of the C-Component can be

modified:

e The C-Component must have exactly one Power Port. That is, no other Port Types
are allowed, the default Port cannot be deleted, and no other Power Ports can be
added.

e The state Equation (first Equation) is fixed. That is, the user cannot modify it.

e The constitutive Equation (second Equation) has the fixed form e=¢(q p). That s, it

can only be composed of Variables ¢ and g and Parameters p, with e as an output.

Default Property Values

The following information specifies a default instance of the C-Component.
e A ssingle In Power Port.

e First Equation: ¢ =/ fdt

e Second Equation: e = ¢q/C.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Now consider how the Template data is used. An Instance of the model is created
using the default property values of the General Multiport. When a user attempts to
modify the properties of the model, the Instance Editor interprets the Constraints and
enforces them. For example, the Equation editor only allows a user to modify the second
Equation. In addition, the editor checks if the form of the Equation defined by the user

matches the Constraint.

2.3.2 Working with Templates

Figure 7 shows the relationship between an existing Template, a new Template,
and a User. A new Template is created by derivation from an existing Template. The
new Template inherits the Constraints and any default properties that have fixed
Constraints from the existing Template. In this way, a strict parent-child relationship is
established. Any previously defined Template can be used as a parent. One special
Template, the General Multiport Template, has no Constraints or default values. An
instance of the General Multiport Template can be manipulated by a user to have any
configuration that is supported by the General Multiport definition. The General

Multiport Template is used as a "seed" for deriving a set of (child) Templates.
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Figure 7. Working With Templates.

The input from the User in creating a new Template is limited to two types of
actions. First, a User defines additional Constraints to be applied to an Existing
Template. Second, default property values can be added and changed, subject to any
previously defined constraints. The User works directly with the new Template through a
Type Interface. This interface is tuned to enforce the rule that Constraints can only be
added to an existing Template and assists the user in adding new Constraints to a new
Template. This structure simplifies the process of creating a new Template, especially if

a good Type Interface has been designed to present the User with the available choices of

Constraints.

2.3.3 Implications of Inheriting Constraints

Recall that when a Template is created, it is derived from a parent. Derivation in
this context means that the child Template inherits the parent's Constraints. During the

creation process additional Constraints are specified, but Constraints specified by the

parent can not be relaxed.
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Further insight into the implications of this type of inheritance can be found by
considering the influence it has on Template instances. The range of possible instances
of a Template model is limited by its Constraints. For the General Muitiport, the range of
possible instances is limited only by its definition, i.e., there are no Constraints associated
with the General Multiport Template. The range of possible instances of the General

Multiport Template is depicted by the outer most oval in Figure 8(a).

When a new Template is derived from a parent and additional constraints are
specified, as shown in Figure 8(b), then the range of possible instances decreases. More
specifically, the range of possible instances is a subset of the range of possible instances
of the parent. This relationship is shown in Figure 8(a). The range of instances created
from Template 1 is smaller than the range of instances that can be created by the General
Multiport Template. If Template 1 is in turn used as a parent for Template 2, then the
range of possible instances that can be defined based on Template 2 is a subset of those
that could be created using Template 1. Finally, Template 3 is also derived from the
General Muitiport Template, showing that multiple Templates can be derived from a

single parent.
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Figure 8. Parent-Child Structure of Templates.

2.3.4 Template Libraries

Many commercially available modeling environments currently provide a large
number of pre-defined model types for specialized purposes. Models are often organized
into groups according to similar purpose or power domain. Models are listed in the
library by a name and/or an icon. Easy5 (Boeing, 1998) has a typical library architecture.
Several pre-defined groups or models are defined. Each group is referred to as a library.
Some of the libraries provided by Easy5 are the "Valve and Actuator Design Library"”, the
"Electric Drive Library", and the "Aerospace Vehicle Library". When a new UDMT is
created in this environment, it can be placed in any pre-existing library or in a new library

specified by the user.

If a large number of UDMTs have been created and stored in a library, then it can
be cumbersome to browse through a large, flat list, searching for a model type that is

useful for a specific application. This observation is especially true if the set of models is
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being used by someone other than the originator. Another limitation to this scheme is
that a given instance of a model only resides in one library at a time. It may be difficult
to locate a particular model if it cannot possibly be placed in multiple libraries, especially
if the purpose and intended use of the UDMT must be deciphered from only the name
and/or icon. Some of these limitation were addressed by Bruenese, et. al (1998), who
define a classification scheme that allows for models to have muitiple classifications.
However, another issue that is not addressed involves the fact that the classification
system is based on subjective reasoning; how a model is classified by one person may not
match another person's way of thinking. Also, if the number of models with a given
classification becomes large, the original problem of sorting through a large, flat list of

models remains.

One benefit of the Template structure is that at least three methods for organizing
a list of Templates are possible: by keyword, by constraint, and by generation history.
These methods help to overcome the problems listed above. A description of these

methods is given below.

2.3.4.1 Organization By Keyword

Recall that part of a Template definition includes a set of keywords. By
thoughtfully associating a set of keywords with the Templates in a library, a simple yet
powerful mechanism can be employed for searching through a list of Templates. To
begin a search, one or more keywords from a list of known keywords are specified.

Next, each Template in the library is examined and its keywords are compared to the
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keywords in the search list. The result of the search would be to produce a list of all the
Templates that have the same keywords that are in the search list. The matching criteria
can be simple, (e.g., any keyword matches any target list entry) or more complex (e.g.,

based on a logical construction of keywords).

This searching scheme allows a set of Templates to be classified in multiple ways,
not just placed in a single group. It also means that it is possible to find a Template in a
Library in multiple ways. This result is practically important, since different people

organize their thinking in different ways.

2.3.4.2 Organization By Constraint

One limitation to using keywords as a searching device is that there is no control
over which keywords get associated with a Template. This situation has the potential to
be misleading and frustrating, with searches leading to inappropriate Templates. The
idea of using keywords as a filter can then be extended to using the Constraints that are
associated with the Template. For Constraints that are sufficiently general, it would be
possible to search a library for Templates that have that Constraint. For example, a
library could be searched for Templates that have the Constraint that no Power Ports are

allowed, or for Templates that are constrained to have only Algebraic Equations.

This scheme has many of the same benefits discussed with the keyword method.
An additional advantage to this idea is that the Constraints associated with a Template

directly influence its functionality. This result means that it isn't possible to have a
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search that produces a poorly matched Template. That is, the Templates found as a result
of a Constraint search are guaranteed to exhibit the behavior specified by the Constraints.
Another advantage is that classifying models based on what Constraints are applied to

them is a natural way to organize one's thinking about a set of models.

One weakness of this scheme is that the list of Constraints on which to search is
limited to the types of Constraints known to the system. Also, the Constraints are strictly
limited to functionality; abstract classifications that are possible using Keywords are not
possible. For these reasons, it is useful to support searching both by keywords and by

Constraints.

2.3.4.3 Organization By Generation History

A third classification scheme takes advantage of the Parent-Child relationship
between two Templates (see Figure 7). This relationship sets up a natural ordering of
Templates in a tree structure instead of in a flat list. Recall that a child Template is a
specialization of a parent Template. Browsing is aided by this fact. For example, if a
candidate model located in a library is too general, then a child Template can be sought
that specializes the behavior in an appropriate way. Conversely, if a model found in the

library is too restrictive, the parent model can be considered.

An additional benefit to this classification arises from the fact that the
classification structure can be patterned after the thinking of the person building it. This

is possible because the classification structure is not unique. For example, consider the
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task of initializing an environment with a set of electrical components that only have
Power Ports. One way to go about this task is to first define a Parent Template that adds
the single constraint that all the power ports must be electrical. The next step might be to
derive a new Template from this Parent Template and add a single Constraint specifying
that there are no Signal Ports. This path is illustrated in Figure 9(a). An equally valid
option for obtaining the same results would be first to define a Template with no Signal
Ports and then to use this Template to derive one that adds the Constraint that all Ports

are electrical.

Gencral General
Muitiport \ Multiport \
\ \
v v
Electrical \ No Signals
v v
Electrical. No Signals.
No Signals Electrical
(a) Path 1 (a) Path 2

Figure 9. Two Paths for Generating a Template.

2.4 Illustrative Examples

Two examples will help to illustrate how the design ideas discussed in this
chapter are used when working with Templates. The first example demonstrates how a

Template is used to define and work with an instance. The second example shows how
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new Templates are created based on existing Templates and the natural classification that

arises.

2.4.1 A Template Definition

A representation of the information associated with a Template of a Permanent-
Magnet DC Motor is shown in Figure 10. The information is divided into the four
categories that were used to describe a General Multiport in Section 2.2. On the left side,
default property values are given. Constraints are listed on the right hand side and

correlate with the properties listed directly to the left.
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Topological Constraints
Component Tvpe
Core Fixed.
Ports Fixed Port Number.

Electrical Power In
Rotational Power Out

Fixed domain, direction.
Fixed domain. direction.

Functional

Constraints

Port Variables
Electrical: v. i
Rotational: 7, w

Equations

Prefer v as input.
Prefer ras input.

Allow ODE and Algebraic.

v=y, +wn+v, Fixed.
T=Tm-Ts-Tr Fixed.
V=K, Fixed.
Ty = km[ Fixed.
di _ g
v =L v, =¢sC-.p)
ve = R ve = g (i. p)
Z‘_,=Ja) rR =¢7(a)*p)
TR =R, = ¢s (@. P)
Parametric Constraints
Parameters K€ ki Kim3e -y Kn}
P={kn R. L, J R,} Repun SR. < R, e
0<sL <L
in ST E T e
O0<R,<R,max
Display Constraints
Icon Fixed.
Ke‘, WOl’dS 767'77+T
Two Port, Transducer.... | Fixed.
Name
PMDC Motor Fixed.

Figure 10. A Template of a PMDC Motor.

Note that the topological property of this Template that specifies the default
Component Type is "Core". Recall that this attribute means that the Component is
structurally irreducible and Equations are directly associated with the Component. A
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Constraint on this property specifies that the "Core" designation is Fixed. This Constraint
indicates that a user can not change an instance's Component Type from Core to

Subsystem.

The default data also specifies that there are initially two Ports associated with
this Component: an Electrical Power In and a Rotational Power Out. The Constraint,
“Fixed Port Number" indicates that the Port number can not change; i.e., no Ports can be

added or deleted. The power domain and power direction of each Port are also fixed.

The default Equations listed suggest that this model of a motor nominally
considers the effects of the winding resistance and inductance, back emyf, and the inertia
and friction in the motor. Although all the effects are linear by default, some non-linear

equations are possible.

There are two types of Constraints on Equations shown in the figure. Some
Equations are "Fixed", meaning the Equation can not be changed; others have a fixed
form, meaning the equation can only have the specified variables and parameters and

must have the specified variable as an output.

There are two types of Constraints on Parameters shown. The motor constant 4.,
has a list of allowable values. This Constraint is consistent with the fact that motors are
often available with discrete values of motor constants. The other Parameters have an

allowable range of values in the format shown.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The Constraints are intended to make sure that the basic model effects are
captured and that the form of the equations is correct, while still providing flexibility for
multiple instances. This flexibility means that a broader range of model variations is
possible than if only the parameter values could be changed. For example, the
mechanical resistance equation model could be changed to model a different type of

friction model, such as Coulomb.

Recall that Constraints specified in the Template are enforced by the Instance
interface. For example, limits on parameter values are enforced whenever a user attempts
to change a parameter value. If the entered value is not within the specified range, the
user is immediately notified and required to fix the error before continuing. Another way
that the Instance Editor can enforce Constraints is by never presenting the user with an
option to perform a task that would violate a Constraint. For example, since the number
of Ports is fixed, the user is never given the option to "add" or "delete" a Port. Using the

Constraint information, an instance then "behaves" according to its design.

2.4.2 Creating and Classifying UDMT Templates

When creating a new Template, the starting point is either the General Multiport
Template or another existing Template. Consider the process of defining new Templates
as illustrated in Figure 11.
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Constraints
General cl
Multiport —=~3
\
Template v

-1
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>
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Y=piX; ~ pax>

Figure 11. Deriving New Templates.

A new Type, T1, is created, based on the General Multiport Template. To
accomplish this objective, Constraints Cl are added. The Constraints are as follows: no
Power Ports, 1 to # In Signal Ports, 1 to m Out Signal Ports, and Algebraic Equations.
These Constraints limit the possible models that may be defined using T1 as a Template,

but still allow for a broad class of models.

A new Type, T2, is created, derived from the existing Type Tl. The additional
Constraints of exactly one Signal Out and exactly two Signal In Ports mean that models
based on T2 have less flexibility than models based on T1, but they are more efficient for

certain tasks.
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Similarly, a new Type T3 is created based on T2. The additional Constraint in
this case is that the Equations are Linear. This Constraint effectively creates a Weighted

Sum Block, with the parameters p; and p; accessible for modification by the user.

Notice that Types T2 and T3 each could have been created directly from the
General Multiport Template. However, this path would require more effort and input
from the user than starting with an appropriate parent. It also should be emphasized that
defining multiple Templates does not increase the range of models that can be defined.
That range is bound by the General Multiport definition. In fact, if the only Template
that was available the General Multiport Template, no generality would be lost; i.e., a
user could create any model supported by the definition. However, each time an instance
was created, a user would need to make a large number of modeling decisions that would
eventually result in the desired model description. Instead, using modeis that have been
appropriately constrained eases the modeling burden. Applying Constraints to a
Template is therefore equivalent to a user making modeling decisions. By choosing a

specific type, some modeling decisions are already being made.

The example above also demonstrates how the derivation of new Templates from

existing Templates, by applying additional Constraints, leads to a natural classification of

a set of Templates. Each Template is a special case or subset of its parent.
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CHAPTER 3
IMPLEMENTATION OF A MODELING ENVIRONMENT

3.1 Implementation Background

In this chapter an implementation of a modeling environment for mechatronic
systems is described. The environment was specifically targeted to support the General
Multiport modeling construct, the use and creation of Templates, and use of the library
tools described in CHAPTER 2. A brief synopsis of the goals of this design is presented
here.

e The Environment will have a simple-to-use, graphically driven interface that is
congruent with common software that is currently available. Although this goal is not
a specific research issue, it is nevertheless a significant objective for any practical
application (Mackulak, et. al., 1994).

e The Environment tools, semantics, organization, and operation will be congruent with
standard modeling paradigms.

e The fundamental modeling construct will be the General Multiport.

e In this demonstration environment explicit, ordinary differential equations will be
supported.

e Every modeling component defined in the system will be a User-Defined Model
Type, which will be defined using Template concepts.

e The environment will use Template data to provide tools that ensure that model
instances are used as intended.

e The creation of a new Template will be as simple as possible, only requiring a user to

fill out a set of simple forms.
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e New Templates will be derivable from existing Templates. Constraints are
automatically inherited.
e A classification system is supported that supports library browsing and searching

tools using keywords, constraints and generation history.

3.1.1 Previous Work

There are several existing software implementations that are used for mechatronic
systems modeling that also support the definition of UDMTs. In this section, the relevant
features of two modeling tools will be discussed. Simulink (MathWorks, 1999) is
representative of software that is based on fixed input/out information flow. 20Sim
(Controllab Products, 1999) is representative of software based on both information and

power flow.

3.1.1.1 Simulink

The Simulink environment supports models with fixed input/output information
flows. There is no support for power flows. UDMTs are implemented using "S-
Functions". An S-Function is a text file written in the style of a program subroutine and
uses one of three forms: syntax specific to Simulink, FORTRAN, or C. The name of the
text file is the name of the UDMT. The syntax of an S-Function can be somewhat
complex and requires knowledge of a specialized format and Simulink-defined functions.

There is no automated software support for creating and editing S-Functions.
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An S-Function definition provides for specification of a fixed number of Signal
Ports. Each Port has a specific "width", which is the number of variables associated with
it. Ports can either have a fixed or variably sized width. The actual number of variables
associated with a Port with a variable width is specified when the S-Function is

connected in a system.

A fixed input/output relationship among the port variables is specified in an S-
Function using constructs that are common in FORTRAN and C and functions that have
been defined by the Simulink environment. Once this relationship has been defined then
1) the causal form of the equation cannot be altered and 2) all instances of the S-Function
must use that definition; i.e., an instance's equations cannot be modified. However, each

instance can specify its own set of parameter values.

Simulink has some built in support for organizing a set of S-Functions. First, a
set of "libraries" can be created. Each library can contain a set of S-Functions. A
particular S-Function is found by manually searching the contents of each library.
Alternatively, the location of a particular S-Function can be found using the S-Function's
name and an automated search tool; i.e., if the S-Function name is known, then its model

can be found.

3.1.1.2 20Sim

The software package 20Sim supports models composed of both information and

power flows. All models that are defined by the system are based on the modeling
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language SIDOPS+ (Bruenese and Broenink, 1997). The result is that nearly every
component model in the system can be considered a UDMT. Comprehensive knowledge
of SIDOPS+ is not required to create many types of component models, but at least some
knowledge is required for all types of component models. The software provides some

automated help in the creating of new UDMTs, mainly in the form of syntax checking.

SIDOPS+ specifications provide for either a fixed number or variable number of
signal and power ports. Each port has a specific "dimension", indicating the size of a

matrix that stores the port's variables.

When specifying the properties of a SIDOPS+ model, a default relationship
among port variables, or a set of equations, can be supplied. 20Sim supports two features
with respect to a component's equations that are of particular importance. First, a
component's equations are treated symbolically. The result of this design is that multiple
causal forms can automatically be derived. As was previously mentioned, this point is
key for supporting the reuse of physical system models. Second, each instance of
SIDOPS+ model maintains its own set of equations. The result of this design is that a
given SIDOPS+ model can be used with greater flexibility. However, an unfortunate
consequence also results. A SIDOPS+ model has limited ability to ensure that its
equations are modified in a way consistent with original intentions. As an example, it is
possible in the 20Sim environment to specify the equations of a bond graph, I-port C-

Component to behave as an R-Component, as discussed in Section 2.1.1.
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Library support in the current version of 20Sim is limited to placing SIDOPS+
models in various directories of the operating system. However, a design for more

extensive library tools has been described (Bruenese, 1997).

3.1.2 Contents of Chapter

Based on the review of currently available tools and the desired goals of this
research, an implementation of an environment for modeling mechatronic systems was
created. The modeling environment developed is called Model Builder (MB). General
features of the MB and an example of working with a modeling component are described
in Section 3.2. Using MB to define a new Template, both by starting from scratch and by
using an existing Template, is illustrated in Section 3.3. Section 3.4 presents tools for

browsing the contents of a library.

3.2 Creating and Editing Component Models

3.2.1 General Features

As can be seen in Figure 12, the MB environment is graphically driven and uses a
common Windows interface. A list of available Templates appears on the left-hand side
of the screen in the list labeled "Components". This list was specifically not labeled
"Templates" to avoid forcing the advanced features of Templates onto users who simply

want to use the environment for creating models based on existing Templates.
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Consequently, in the rest of this chapter, "Component” is often used as a synonym for

"Template". The context of the discussion will make the actual meaning clear.

The list of Components initially displays all of the Templates that are known to
the system in alphabetical order. However, as is indicated in the figure, there are more
sophisticated tools for browsing the list of Components. These features are described in

Section 3.4.

Upon starting MB a new model is created. The top-level contents of a model are
displayed in a Model Window. Multiple model files can be opened concurrently in the
environment, with each model displayed in its own Model Window. The contents of
Subsystem Components can also be displayed concurrently. To view the contents of a
Subsystem Component, the right-mouse button is clicked on its icon. This action
produces a "context menu" with commands that are applicable to the Subsystem
Component. One of the context menu commands is "View Contents”. If the Subsystem
has not already been opened, then selecting this command causes a new Model Window
to be created, displaying its contents. If the Subsystem has been previously opened, then
selecting this command causes the Subsystem's Model Window to be brought to the top
of the windows stack. There is no limit to the depth of imbedded subsystems in this

environment.

In Figure 12, the top-level contents of a model called Modell is shown on the top

right-hand side. There is a single Subsystem Component in the top level of Modell,
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called Subsystem 1. The contents of Subsystem I, which is currently empty, are

displayed in a Model Window on the bottom right-hand side.

PR T SIS T TR RD YR IIIINY,

gg -MB - Modell
File Edit View Window ﬂelp

widd] [ L]R]R] S[2] |

: Components:

........

i Keyword Filters: Rt Mshatial | TR A ——
i {Capacitance o1}
i{Core
i{Inertia
i {Power
i|Power Conserving

| Display By:

Keyword Filters

Ready

Figure 12. Model Builder Environment.

Selecting the desired Component from the Component List and dragging it into an
active Model Window creates an instance of a Component. After this action an instance
of that Component Template is created and its icon appears in the Model Window. The
Component icon can be positioned freely in the Model Window by dragging it with the

mouse. As is standard with graphically driven tools, many of the objects that are created
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in a Model Window can be easily positioned by dragging, including a Component's Ports

and its Label.

3.2.2 An Example

Some additional features of the general interface and the Template design can be
demonstrated by considering the process of creating an instance and editing a bond graph,
one-port Capacitance Component. The first step is to locate the desired Component from
the Component List. Once the desired Component Template has been found, a new
instance of that Component is created. At this point, an icon representing this component
will appear in the Model Window, as shown in Figure 13. The half arrow on the left is a
Power Port and is labeled "1". The Component label is "Capacitance I". These labels

can be edited and displayed or hidden at the user's discretion.

Figure 13. An Instance of Bond Graph, One-Port Capacitance Component.

The Template that defines the Capacitance Component is used to ensure correct
Component "behavior". For instance, it is not possible to delete the Power Port or to add

another Power Port or a Signal Port. Additional Template data restricts the way in which
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the Capacitance Component's Equations are edited. Figure 14 shows the interface for
editing the Capacitance Component's Equations. By default, there are two Equations.
The first equation listed is a state equation. It is an inherent part of the definition of a
Capacitance Component. Therefore, this equation cannot be edited or deleted. Disabling

the Add and Delete buttons when the state equation is selected enforces these restrictions.

The second equation in Figure 14 is a linear constitutive law. However, since the
Component is not restricted to this linear form, this equation can be edited, but not
deleted. An additional constraint on editing this equation is that it must be of the form

el=¢@(ql), where ¢(ql) is any function of the variable ql.

s o

Caovons |

Definition:

ql =Integral{fl.0)

el =q1/C Add
Edit

Delete
Description:
State Equation
oK | Cancel

Figure 14. Editing the Capacitance Component's Equations.
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3.3 Creating and Editing Templates

In this section the tools provided for creating a new Template, for deriving a
Template from an existing Template, and for editing an existing Template are discussed.

The ideas are introduced by way of examples.

3.3.1 Creating a Solenoid Template

One of the design goals for this environment was to simplify the process of
creating Templates. To this end an interface was designed that amounts to filling out a
series of forms. Each of these forms will be reviewed for the process of creating a

Template for a simple model of a solenoid, represented in Figure 15.

Movable
Slug

oil

Figure 15. A Solenoid Component.
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3.3.1.1 Initial Form

The first step in creating any Template is to select an existing Template from the
Component Template list to act as a Parent. The constraints that are specified by the
Parent are inherited. In this first example, a general Core Component is selected as the
Parent. In this case, the only constraint inherited is that the new Template must also be a
Core. When the parent Template has been selected, then the File menu command "Create
Template..." can be selected. At this point the form shown in
Figure 16 is displayed, with the Parent Template name automatically filled in. This form
also provides the opportunity to give the new template a name, which must be unique
when compared to the list of existing Templates. In the current case, "Solenoid" is

chosen as the name for the new Template.

BE ot Component Templatee » arenl aod Hoamee

Parent Template:

ICare

Template Name:
[Solenoid

< Raw E Next > l i  Cancel

Figure 16. Solenoid Template: Initial Form.
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3.3.1.2 General Properties

The general properties of a Template are specified using the next form. The first
piece of information is the Component Type that will be created. In the general case, the
choices are Core or Subsystem. In the present case, when the parent Template is a Core

component, there is only one option: Core.

There are two Display Icon Types available: Text or Bitmap. This property refers
to the way in which a display icon for a Template is generated. The default option, and
the simplest, is to specify a text string that will be used to create an icon. The second
option is to supply a bitmap file that has the same base name as the Template that is being
created. In the current case, Bitmap is chosen as the display icon type and a bitmap file

called "Solenoid. BMP" must be externally generated.

The next general Template property is the Default Label. Each Component that
exists in a Model Window must have a unique label. The reason for this restriction is that
the label is used to generate unique System variable names. For Signal Ports, which have
one variable associated with them, System Variables names are automatically generated
by concatenating the Port name with the Component name. For Power Ports, which have
two variables associated with them, System Variables are automatically generated by
concatenating the name of the each Variable with the Port name and the Component
name. This naming strategy makes it possible for two instances of a component to have

the same port name set.
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Every Component instance that is created will automatically have the default label
specified in the Template appended by the instance number. For example, if the defauit
label is "Solenoid" then first Solenoid created in a Model Window will be called
"Solenoid1" and the second will be called "Solenoid2" and so forth. After an instance is
created, its label can be changed by the user, subjected to the constraint that the label is

unique among all other Components in the same Model Window.

Finally, a set of Keywords can be associated with the Template. There are no
restrictions on what can be specified as a keyword, but each one should be thoughtfully
chosen. As will be demonstrated, the keywords associated with a Template can be used
to help search through a set of Templates. The completed form for the general

properties of the Solenoid Template is shown in Figure 17.

it ampoaent Temgplat. grese by s s Frope ety

Companent Type: Default Label
lCore _'_} ;Solenoid
Display Icon Type: Keywords:
{Bitmap i} Core :
Power Consenving ::>
Bitmap File: ransducer
Solenoid. BMP
<Back [ Next > ] Cancel

Figure 17. Solenoid Template: General Properties.
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3.3.1.3 Number of Ports

A form for specifying the number of In Ports and the number of Out Ports that can
be associated with a Component must be completed for each Port Type. Currently, two
types of Ports have been defined, Signal and Power. For this Solenoid Template, it is
specified that there should be no Signal Ports of either direction. Specifying that the
number of In Ports and Out Ports as fixed at 0 completes this objective. Figure 18 shows

the completed form for the number of Signal Ports on the Solenoid.

HE ot g meent Tamgaiate o

Number of Signal Ports'

]

P Number:
e Fixed

C- Variable

s~ Out

@ Fixad
C: Vanable

~ Total

@ Fixed
¢ Varable

<Back E Next > ' Cancel J

Figure 18. Solenoid Template: Number of Signal Ports.

The next decision to be made is the number of Power Ports to be associated with
the Solenoid. In this case two Power Ports are needed, one to represent the flow of
electrical power to and from the solenoids coils, and another to represent the flow

mechanical power to and from the solenoid's slug.
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A design question arises in deciding on the direction of the Ports. One possibility
is that the direction of the power flow is unimportant and can be freely specified for any
instance of the Template. In this case, the form is completed as shown in Figure 19.
Here, the total number of Ports is fixed, but the In Port and Out Port numbers are variable
from 0-2 and the default numbers are 1. This combination of constraints will ensure that
the total number of Ports is always two (the sum of the default number of In and Out

Ports), but the directions of either port can be set to be In or Out.

Bt it o ampoaent Lemplate ©aredrannta o the Flumbier ot b ower BPart

Number of Power Ports:

~In
Min: Mexc Default
C: Fixed .

cveets P A 3

~O0ut

- Fixed . .
@Vl:reiable S

~ Total

@ Fixed
C: Vanable

Figure 19. Solenoid Template: Number of Power Ports, Option 1.

Another possibility is to specify that the In Port and Out Port numbers are fixed at
1. The completed form to accomplish this objective is shown in Figure 20. In this case,
it is assumed that the solenoid is used by applying electrical power to generate
mechanical power, although power can still flow in either direction. Therefore, the

alternative to have a fixed number of In and Out Power Ports is selected.
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Figure 20. Solenoid Template: Number of Power Ports, Option 2.

3.3.1.4 Default Port Properties

After the number of Ports has been determined, additional Port Properties can be

specified. The next form, shown in Figure 21, is used for this purpose.
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Power Parts: --Constraints on Set

Cail : { Ports all have the same power domain
Slug i

I Use Inpu/Output Rule

cBack F  Ned> ]! Concei |

Figure 21. Solenoid Template: Editing Power Port Properties.

There are two Power Port properties that may need to be applied to the all the
Ports as a set. First, all the Power Ports may be required to have the same power domain.
Such is the case when defining a bond graph O- or I- junction. However, this is clearly
not the case in the current situation. Second, the variables that are used as input and
outputs may depend on a rule such as on a bond graph O- junction where only one
"effort" variable is to be used as in input, but it doesn't matter which port specifies the

input effort variable. The solenoid does not require such a rule.
This form also lists default names for each of the default Ports that were specified
on the previous form. The properties of each Port listed are specified by selecting the

Port of interest and pressing the "Edit Properties" button. In the current case, the In Port

represents the electrical coils and the Out Port represents the slug.
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Figure 22 shows the form for editing the properties of the Port representing the
electric coil. The Port Label is used in generating unique variable names. Therefore,

each Port must have a unique Label. A useful Label in the current case is "Coil".

H e tault Foart Frraperte,

Label: Location (Degrees):

e .3

Direction: input/Output Constraint % Fixed

i "<} [Preferred: Effortin/FlowOut <}

Pawer Domain: & Fixed State Variable: W Fixed

|Electrical ief {p (momentum) W‘E}
OK . Concel |

Figure 22. Solenoid Template: Specifying the Coil Port Properties.

The initial Location of the Port is specified here. The value given represents the
degrees from a horizontal line extending from the center of the Component to the right.
Angles are measured using counter clock-wise as positive. To be congruent with the
schematic shown in Figure 15, the Port will be initially placed at -90 degrees. The

Direction of the Port is displayed for reference purposes, but it cannot be changed here.

The Power Domain of the Port is specified on this form. The system understands
five different power domains: General, Mechanical Translation, Mechanical Rotation,
Electrical, and Hydraulic. The power domain value for a port is used for two purposes.

First, the power domain determines the names of the Variables associated with the Port.
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The Variable names and descriptions for each of the Power Domains are listed in Table 1.

Second, the system ensures that only Ports with the same power domain are connected.

Table 1. Port Variable Names.

Power Variables
Domain Names Descriptions
e Effort
General £ Flp w
q Displacement
p Momentum
F Force
Mechanical \" Velocity
Translation d Distance
pt Momentum
T Torque
Mechanical w Angular Velocity
Rotation Theta Angular Displacement
h Angular Momentum
v Voltage
Electrical | Current
qe Charge
Lambda Flux Linkage
P Pressure
Hydraulic (\2/}1 ://g:ﬁmztnc Flow Rate
ph Pressure Momentum

In the current case, the power domain for the coils is chosen to be "Electrical”.
Additionally, every instance of this Port should always be defined as an electrical Port.
Selecting the "Fixed" check box that is next to the Power Domain options specifies this

constraint.

As has just been mentioned, Power Ports have two variables associated with

them: one functional input and one functional output. Which Port Variable is an input
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and which Port Variable is an output is influenced by the Input/ Output Constraint. For
the case of the coil, the effort variable, or voltage, is specified as preferred as an input.
This constraint has to do with the preferred form of the equations that will be specified
shortly. As a device which stores electrical power, a State Variable is associated with
this port, which represents the flux linkage of the coils. A corresponding form for the

slug Port is shown in Figure 23.

Dietault Bart Brrapertie

Labeil: Location (Degrees):
: [Sig F o
Direction: Input/Output Constraint 7 Fixed

isrefened: Effort Out/Flow 3

I‘--= 524

Power Domain: i Fixed State Variable: & Fixed
fMechanical Translation 3 f q (displacement) iel

| oKk . Cancel |

Figure 23. Solenoid Template: Specifying the Slug Port Properties.

3.3.1.S Equations

The next set of forms deals with the functional aspects of the solenoid. In this
example, a set of parameters and a set of equations are defined. Some planning is needed
to set up a meaningful set of parameters and equations that will be useful and flexible for
a user working with an instance of the Solenoid Template. The goals in defining the

functional properties of the solenoid are to
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1) provide a default set of parameters and equations that will describe the solenoid's
behavior in a meaningful way;
2) Allow for the user to modify the default equations; and

3) Assist the user when editing the equations in ways that minimize errors.

Recall that the inductance value of the coil varies as the slug moves through it.
This effect is due to the differences in the permeability of air and the slug material. A
general form of the relationship between the coil's inductance vs. the position of the slug
is shown in Figure 24. When x is zero, the slug is centered in the coil. As the slug moves
out of the coil in either direction, the inductance decreases until it reaches its minimum
value. This relationship car. be represented by the parameterized equation given below.

L(x) = L min+ (Lo~ L min) (1

o)

In Equation 1 Lo is the maximum inductance value of the coils, Lmin is the minimum
inductance value of the coils, and c is a general measure of how quickly the inductance
changes from Lo to Lmin. In practical terms, the parameters Lo, Lmin, and ¢ can be

chosen so that shape of Equation 1 matches the desired characteristic.
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Lo s

— Lmin

v

Figure 24. Inductance of Coil as a Function of Slug Position.

Two equations can be used to describe the behavior of the solenoid at its ports. The
general form of these equations is given below.
i=i(4, x) [2]

F=F,x) (3]

For a linear inductance model Equation 2 becomes

i=A/L(x) [4]

For a more complete discussion of the behavior of a solenoid device, see Karnopp, et. al.

(1991), pp. 284-289.

Using the information above, the Parameter form for the solenoid Template can
be completed as shown in Figure 25. On the right the constraints that can be applied to
the set of parameters is shown. If the "Fixed" option was checked, then the parameter

equations would all be considered constants, i.e., the user could not edit them. This is not
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true in the current case. On the left the parameters used in Equation I, with default

values, are specified.

BE 7 amponent Pemplhates Dacbioe boaramatore,

Defauit Parameters ~Constraints on Set
Lo =0.004 :

Lmin = 0.002  Foced

c=0.004

{ Add | Edit | :Detets]

<Back J Net> | i cCancel |

Figure 25. Solenoid Template: Default Parameters.

Each parameter has a set of properties. The form for the parameter Lo is shown
in Figure 26. The parameter is defined and given a default value in the top line of the
form. A Parameter can be specified using a constant value, like shown in the figure, or as
an equation made up of constants and previously defined parameters. A list of the
parameters that have been previously defined is listed here for quick reference. Note,
however, that Parameters cannot make use of the time variable and must be explicitly

computable; i.e., algebraic loops among Parameters is not allowed.

The Parameter Properties form allows for a definition to be associated with the

Parameter that will be used to assist the user in specifying its value. Two types of
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constraints can be applied to an individual parameter. If the parameter is to be treated as
a constant, then it is constrained as "fixed". In the current case, there is a constraint that
the parameter must always be defined within a specified range. Similar forms can be

completed for the other two parameters.

T TTT O T eSO T e e res

lwrmw l'u.xns'»’r Frroperties
: Defauit Parameter:

- [lo-0004

Description:

qudance value when the siug is in completely in the coil.

‘ I Fixed ¥ Value Limits
: Min: Ig_ggg Mex: lﬂ.ﬂ‘l

Awvailable Variables:

c
Lmin

oK , Cancel

Figure 26. Solenoid Template: Defining Default Parameter.

After the Parameter properties have been specified, a set of Equations can be
defined. Figure 27 shows the form with the default equations specified for the solenoid
Template. A list of constraints that may be associated with the Equations as a set is listed
on the right-hand side of the screen. The meaning of these constraints is described

below:

Fixed - None of the default equations can be edited by the user.
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Algebraic - The equations can only be defined using algebraic operators. Specifically,
the integral and derivative operators cannot be used.

No Use of Time Variable - None of the equations can make explicit use of the time

variable.

EE it Component Template Dictine £ gquation

Detauit Equations - CONnSraints on Set--r-seeeeerseseens
lambdaCaoil = Integrai(vCoil.0) : :

dSlug = Integral(VSiug,0) . 1 I Foced

L = Lmin + (Lo-Lmin)/(1 +{(x/C) :

2 oy
dL_dSlug = -2*(dSlug/c)(Lo-LMin}/(1 +(dSlug/c)"2)"-2 { Lineer

iCoil = lambdaCoil/L

[7: No Use of Time Variable
FSlug = JambdaCoil“2*dL_dSlug/(2*L"2)

O UU U —

<Back [ Next > I Cancel J

Figure 27. Solenoid Template: Default Equations.

On the left-hand side of the form are listed the default Equations that have been
defined as part of the Solenoid Template. The first two Equations are automatically
defined and cannot be edited or deleted at this point. This result is a consequence of
choosing the coil and slug Ports with state variables as discussed in Section 3.3.1.4. The

other four Equations are defined and modified using the "Add" and "Edit" buttons.

Each Equation has a set of properties. Figure 28 shows the properties for the

default Equation that defines the Force at the slug Port. As was previously discussed, this
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equation has a fixed form. Selecting two Constraints specifies this behavior. First, the
"Edit Right-Hand Side Only" constraint is chosen. This constraint indicates that the
FSlug variable must always appear on the left-hand side of the equation. The second
constraint restricts this equation to only be composed of the variables listed. Similar

forms can be completed for each of the other Equation shown in Figure 27.

["t'flno' Fayuatmn brrapertie -

¢ Default Equation:
[FSlug=-IambdaCoil"Z"dL_dSlug/(Z‘L"Z)
Description:

lDefault Force equation

{_ Fixed

. % EditRightHand Side Only & RestiaSetof

Aveilable Variables:
! {7} Restrictto Linear

{_; Restrictto Algebraic

: [T No Explicit Use of Time Variable

oK

Figure 28. Solenoid Template: Slug Force Equation.

3.3.1.6 Properties Summary

After completing the above forms, the solenoid Template definition is complete.
At this point a summary of the properties that were specified in the previous forms is

given, as shown in Figure 29. After pressing the Finish button, the name of the new
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Template will appear on the list of Components in the main MB window and be available

for use. An instance of the Solenoid will appear as shown in Figure 30.

EL 0 crmponeent Teernploates b T A R R e e

New Template Properties:

Name: Solenoid.

Parent Template: Power.

Component Type: Core.

Display lcon Type: Bitmap: File: Solenoid. BMP".
Default Label: Soienoid.

|[Keywords: Core Power Consenving Transducer

Canstreints on Signal Parts:
Signal Ports In: Fxed. 0
Signal Ports Out: Fixed. 0

Constraints on Power Parts:

<Back L Finish 1 W Cancel I

Figure 29. Solenoid Template: Summary Page.

Slug

Figure 30. An Instance of the Solenoid Template [con.

3.3.2 Deriving a New Template From an Existing Template

As can be noted by working through the previous example, there are many

questions that need to be addressed when creating a new Template. Although using a set
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of forms simplifies the process, an additional simplification can be achieved by

exploiting the fact that the constraints specified in a Template's parent are inherited.

In recognizing this fact, it is useful to "seed" a Template library with a set of
Template definitions that have selected properties constrained. For example, it can be
useful to define a general "Signal" template that only adds the constraint that there should
be no Power Ports. Once this is done, then the Signal Template can be used as a parent
when generating a set of block diagram Templates. Then, when creating a new Template
based on the Signal Template, the decision on how many Power Ports the new Template

should have is already made.

The feature of inheriting constraints from a parent Template can also be useful
when two similar templates are to be specified. As an example, consider a Template that
defines a field-controlled DC Motor that allows for non-linear mechanical resistance.
Such a Template might be defined with three Ports: an In Electrical Power Port, for the
motor armature, an Out Rotational Power Port, for the motor shaft, and a Signal Port, for
the field current. This information is represented in Figure 31. The default equations that
might be associated with this Component Template, along with the constraints for editing

them, are listed in Table 1.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 31. A Field-Controlled, Non-Linear, DC Motor Icon.

Table 2. A Set of Equations for a Field Controlled DC Motor.

Equations Constraints

vArm =vL + VR + vM Fixed

TShaft = TM - TJ - TR FPixed

idot = der (iArm) Fixed

wdot = der (wShaft) Fixed

Km = km*if Restricted Vars:
Km, km, if
Edit RHS

vL = L*idot Fixed

vR = Re*jiArm Fixed

vM = Km*wShaft Fixed

™ = Km*iArm Fixed

TI = J*wdot Fixed

TR = Rm*wShaft Restricted Vars:
TR, Rm, wShaft
Edit RHS

Defining such a Template takes care, planning, and time. The result is a new
model type that can be instantiated with relatively little effort. The Template is also
flexible in that it not only allows for specification of some model parameters, but it also
allows for modification of the mechanical resistance equation while ensuring that this

function has the correct form.
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The initial Template design effort can be further exploited if a model of a
Permanent-Magnet DC Motor with all linear equations is to be defined, as shown in
Figure 32. In this case, the previous Template definition can be used as a Parent
Template. This decision would greatly reduce the effort required to define a new
Template. Only a few additional constraints need to be added, namely that the Signal
Port is not needed, the Km value is a constant, and the resistance equation is Fixed to a

linear form.

Figure 32. Permanent Magnet DC Motor Icon.
3.3.3 Editing Existing Templates

New model types based on a Template definition are intended to be a robust tool
for assisting those who later create instances of the Template for a particular modeling
purpose. The task of creating a Template that is precisely defined and has the desired
characteristics can be an iterative process. A typical process would be to specify the
properties of a new Template, create an instance of the Template, "test” if the behavior is
as expected, and, where needed, modify the properties of the Template. This process

may be completed many times until the desired Template design is achieved.
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It is obvious that the modeling environment should provide tools for editing the
properties of an existing Template. In MB, this task is easily accomplished by first
selecting the Template that is to be modified. Then, selecting the £dit menu command
"Edit Template" allows the user to review the set of forms that were filled out when the

Template was initially completed, and to make changes where desired.

Although the benefits of editing an existing Template are obvious, there are some
dangers in using this feature that could potentially cause problems and confusion. One
issue involves the concept of inheriting constraints from a parent Template. If a
Template that is being edited specifies a different Parent than originally chosen, then
some of the current properties of the Template could possibly violate constraints set by
the new Parent. For example, consider a Template that specifies one Signal In Port.
Upon editing this Template, suppose a new parent was selected that specified zero Signal
Ports. At this point, there would be a conflict between the current Template definition
and its parent Template's constraints. A similar situation could arise if the Template
being edited has been used as a Parent itself. Changes in a parent Template could create

conflicts with existing children Templates.
To address the issue of the potential for conflict between the parent and
Templates, the environment has been given two restrictions. First, a Template's parent

can not be changed during the editing process. Second, a Template that has been used as

a parent Template cannot be edited at all.
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Another similar issue involves the relationship between a Template and any
instances that have been defined. Adding a constraint to an existing Template when
editing it could create a situation where a pre-existing instance has properties that violate
constraints specified by the Template. At this point in time, a strategy for automatically
dealing with this potential conflict has not been defined and warrants additional effort. In

the mean time, knowledge of this issue can serve as a guide for the editing of Templates.

3.4 Library Browsing Tools

To address the problems of searching through a large list of Templates in a library
three different organization schemes were developed: by Keyword, by Constraint, and by
Generation History. These ideas were discussed previously in Section 2.3.4. In the next

three sections the implementation of these ideas in the MB environment is discussed.

3.4.1 Keywords Filters

Associated with each Template defined in the MB environment is a list of
keywords. In the main interface of the MB environment (see Figure 12) the set of all
Components known to the system is displayed in a scrollable list, alphabetically ordered.
To facilitate searching through this list, the MB environment provides a feature for
"filtering" the list of Components that are displayed by a set of keywords. Beneath the
list of Components is a selectable list of all the keywords that have been associated with
all of the Templates defined in the system. Initially, none of the keywords are selected,
which indicates that the entire list should be displayed. A set of one or more keywords
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can be selected in this list to become the current "Filter". When an "Update" button is
pressed the system examines the keywords associated with each Template and displays
only those that match the set of keywords in the filter. An example of this feature is
shown in Figure 33. The keyword filter is "Signal". All of the Templates that have this

keyword associated with it are displayed in the list above.

Components:
| ] Distributor

Keyword Fiiters:

Power Conserving fa E

Rotation

Source
Transducer
Display By:
ﬁ<eywo rd Filters

Figure 33. Filtering Templates by Keywords.

3.4.2 Constraint Filters

As was pointed out in the previous chapter, one limitation to using keywords as a
searching device is that there is no control over what keyword gets associated with a
Template. An additional search method proposed was to use Constraints instead of
Keywords as the searching tool. This option was implemented in the MB environment in
the following way. For each Constraint that is associated with a Template, a "Constraint
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String" is generated. The Constraint String is a brief text description of the Constraint.
This way, Constraint Strings can be used as a search tool in a fashion that is directly

analogous to the way that Keywords are used.

One advantage to this idea is that the strings that represent the Constraints
associated with a Template are not arbitrarily chosen; they are automatically assigned.
This way there is always a one-to-one correlation between a Constraint String and the
actual Constraint associated with it. Also, the Constraint String is always guaranteed to

represent an actual characteristic of the Component.

Using Constraint Strings as a filter is illustrated in Figure 34. The Constraint
string used was "No Power Ports". The result of this filtering produces the same list of
Components was found with the previous Keyword filtering search. However, this time
it is certain that every Component displayed can never have a Power Port. The same

statement cannot be made in the previous case.
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Components:
o] Distributor
fod Function
%] Gain

] Integrator
0 Signal
@] Sink

ft] Source

{iindate

Constraint Filters:
. - - 1
No Signal Ports
Subsystem
Variable Power In Ports
Variable Power Out Ports

Display By:
rConstraint Filters _v_E

Figure 34. Filtering Templates by Constraints.

3.4.3 Generation History Display

During the Template creation process, a Parent Template must always be chosen.
Although it is possible to derive each Template in the system directly from the General
Multiport Template, as was previously discussed, it can be helpful to use a thoughtfully
chosen Parent. This process naturally leads to a tree-based ordering of templates. This
feature is exploited in the MB environment by allowing for the Templates to be displayed

based on their parent-child relationships.

Figure 35 shows a particular parent-child ordering of a set of Templates.
Templates that have been used as parent Templates but do not currently have their

children displayed on the screen have a box with a plus sign next to them. Double
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clicking on the plus sign causes the list of the Template's children to be displayed and for

the plus sign to be changed to a minus sign.

Compagonents:
8-Q Core
. =-Q Power
: - Capacitance
FEC
< [l Ce
#[c] Ch
S Cr
g o
#-{@] Common Effort
#-[1] Common Flow
4-BY Gyrator
#-{I] Inertia
#-[R] Resistance
----- Q Solenoid
+-5€| Source of Effort
+-[51] Source of Flow
. #-[Tf Transformer
+-Q Signal
Generation History
Display By:
’Eeneration History _'_}

Figure 35. Template Generation History Display.
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CHAPTER 4
CONTROLLED ACCESS

4.1 Introduction

In the previous two chapters, issues related to design of a modeling environment
that supports mechatronic systems modeling and methods for organizing and searching
the contents of a model library were addressed. This chapter discusses the third major
topic addressed by this research, the issue of controlling the access to internal model
details. Such considerations arise when two companies must share model information to
accomplish a system design. Some model information may be proprietary to one of the
companies. This situation is becoming more common as larger corporations outsource
component designs. This situation may also be of concern in an educational setting
where a course instructor, a teaching assistant, and students all use the information in a
model file. However, persons in each of these groups should not necessarily have the

same ability to view and modify the contents of the model.

A simple solution commonly used to protect information is to prevent access to
the entire contents of a component model. In this case, use of such a model is greatly
restricted, with access often limited to specifying parameter values and port connections.
Such an approach, while protecting the interests of the model provider, can be frustrating
to practicing engineers who use the model. Models may be difficult to use correctly due
to a lack of understanding of model details that are inaccessible. If some changes become
necessary due to design changes, the model provider must be employed to change the

model.
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In this chapter a concept, design, and implementation for improving the way
models are shared is presented. The goal is to provide a facility that permits the owner of
a model to control access to various model details, according to the user classification.
Such a feature allows for varying levels of security regarding both reading model details
and modifying them. The ideas presented here combine the General Multiport modeling
data structure presented in Section 2.2, the need for sharing information among different
groups, and the desire to control access to information. While these concepts have been
exploited in different venues, they have not been combined for effective use in a

mechatronic systems modeling environment.

This chapter is organized as follows. Section 4.2 presents design properties of a
modeling environment that supports the control of access to various model properties.
An implementation based on this design is discussed in Section 4.3. The usefulness of

the design is illustrated by the presentation of two examples in Section 4.4.

4.2 Design of a Controlled Access Environment

The MB modeling environment that was presented in the previous chapter serves
as a base implementation environment for tools to support the control of access to
properties of a model. In addition to the data structures already introduced, one
additional data structure must also be defined: a Model File. When a model is built, a
user defines the properties of a set of General Multiports and connects their Ports. The

set of connected Multiports is stored in a Model File. A Model File is generally stored on
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a permanent medium, such as a hard drive or disk. In the current discussion on sharing of
model libraries, the Model File is considered the fundamental shared object. Sharing is

achieved by copying a Model File using standard operating system facilities.

4.2.1 Access-Controllable Attributes

As was previously observed, it can become useful to prevent access to the details
of a model for various reasons. A common method for accomplishing this objective is to
control the access to a model by restricting access to a Model File. Tools provided with
some operating systems, such as Windows NT or Unix, can be employed for this
purpose. Under these circumstances there are three general possibilities for controlling
access. In the first case, there are no restrictions for opening and modifying the contents
of a model file. In the second case, the contents can be examined or "Read", but

modifications are not allowed. In the third case, the contents can not be accessed at all.

While this feature can be useful in controlling how and when a model is read and
modified, the application of access settings are limited to a Model File as a whole. A
more sophisticated approach would allow for individually controlling the access to
various aspects of a model. Instead of simply "locking up" an entire model, only critical
parts of the model are protected. More flexibility is provided and greater utility can be

extracted from a model.

Once the concept of controlling the access to individual model attributes is

accepted, it then becomes necessary to identify various model attributes for which it may
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be beneficial to establish access control. Such model attributes are referred to as access
controllable. In this design three access-controllable objects were identified in order to
demonstrate the usefulness of the ideas. Table 3 lists these objects and their possible
access values. For each access-controllable object, exactly one of the three access setting

values is applicable at any given time.

Table 3. Three Access-Controllable Objects and Their Possible Access Values.

Object Access Values
Core Read/
Equations None Read Modify
Subsystem Open/
Contents None Open Modify
Model File None Load Load/

Save

For Core Equations, an access value of "None" indicates that a Core Component's
Equations can neither be read nor modified. "Read" indicates that equations can be
studied, but not modified. "Read/Modify" indicates that there are no access restrictions

on how equations can be modified.

For Subsystem Contents, an access value of "None" indicates that the Contents of
a Subsystem Component cannot be viewed or modified. "Open" indicates that a
Subsystem can be opened and its contents examined, but modifications, such as adding
and deleting Components are not allowed. "Open/Modify” indicates that there are no

restrictions on examining or modifying the contents of a Subsystem.
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For a Model File, an access value of "None" indicates that the contents of a Model
File will not be loaded when the file is opened. "Load" indicates that the file contents can
be loaded, but changes cannot be saved. "Load/Save" indicates that there are no

restrictions on loading or saving the contents of a Model File.

4.2.2 Users and Groups

To give further flexibility to controlling access to the properties of a model,
additional data structures are used which are patterned after the UNIX file access control
(Stallings, 1998). First, a Current User is defined. The Current User is a system
parameter used to identify the person currently working in the modeling environment.
The value of the Current User Variable can be changed at any time, which is equivalent

to "logging off" and "logging on".

Next, as shown in Figure 36, each Model File contains a set of Groups. In this
initial design four groups are defined: Owner, Group 1, Group 2, and World. Although
the number of groups is currently fixed, in principle the number of groups is variable.
Associated with each of the first three groups is a unique list of Users; i.e., each Useris a

member of exactly one group.
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Model File

World
Group

Owner Group 1 Group 2
Usern Usern Usern

Figure 36. Organization of Groups and Users.

Using this classification scheme, the Current User is always identified as
belonging to exactly one Group. If the Current User is among the Users on the Owner
list, then the Current User is considered an Owner. If the Current User is among the
Users on the Group 1 list, then the Current User is consider a Group 1 User. If the
Current User is not contained on any list, then the Current User is considered a World

User.

The functional purpose of the data structure above is to classify the Current User
as a member of one of the Groups. When a new Model File is created, the Current User
is automatically added to the list of Users of the Owner Group. The lists associated with
the other Groups are initially empty. When an existing Model File is opened, then the

Current User is identified as an Owner, Group 1, Group 2, or World User.
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4.2.3 Group Access Settings

Each access-controllable object maintains an independent set of access values for
the Group |, Group 2, and World Groups. For example, a Core Component can specify
that Group 1 Users can read and modify its Equations, that Group 2 Users can only read

its equations, and that Word Users can neither read nor modify its equations.

Users who are classified as an Owner always have complete access to all data in a
model. In addition, Owners can add and delete Users from any of the Groups. The sole
exception is that the Current User cannot be removed from the Owner List. (If this

option were available, then it would be possible for a Model to be permanently "locked

up”.)

Part of the design philosophy recognizes that a majority of models built in this
modeling environment will not need to define any type of access control. Therefore any

implementation should incorporate the following principles:

e Setting Controlled Access values is optional.

e Controlled Access features are exposed only if it is desired to set some control values,
or if control values have been previously set and are being enforced.

e The default Controlled Access Values are such that there are no restrictions on any

user.
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4.3 An Implementation of Controlled Access

4.3.1 Current User And Group Members

The access control tools described in Section 4.2 are dependent on the value of
the current user. This value is a system parameter that can be set at any time. Initially,
the current user is automatically defined as "Anonymous". If controlling the access to
model properties is not an issue, then this value need never be changed. However, if the
access control tools are desired, the first step should be to specify a new Current User.
This task is accomplished by selecting the Specify Current User command from the Edit

Menu. Selecting this command produces the dialog shown in Figure 37.

T T =
3
R

Current User:

Anonymous

OK * Cancel

Figure 37. Specifying the Current User.

Recall that each Model File maintains its own lists of known users and classifies
them in one of the four Groups: Owner, Group I, Group 2, and World. The Current User
is always classified as belonging to exactly one of these groups. If the Current User is a
member of the Owner Group, then that user has the ability to add and remove Users from

the first three groups. A list of Users is not maintained for the World Group. That group
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is used as a default classification for a User who is not a member of any of the other three

groups.

Figure 38 shows the dialog used for specifying the members of the Owner, Group
1, and Group 2 Groups. This dialog can only be accessed if the Current User is a member
of the Owner Group. The Group for which the Users are to be specified is selected from
the list on the top of the dialog. Figure 38 indicates that the list of Users for Group | is
currently being specified. The list of Users of the currently selected group appears in the
bottom half of the display. Figure 38 also indicates that three Users currently belong to
Group 1. An Owner can freely edit the list of Users of any Group, with one exception:

the Current User cannot be removed from the Owner list.

r dit Group lists

Group

Users:

User1
User?2
User 3

oK “.' Cancel

Figure 38. Interface for Editing Group Members.
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4.3.2 Specifying Group Access Settings

At any time during the process of building a model, an Owner User can set the
access values for any existing access-controllable object. Figure 39 shows the dialog for
defining access settings for a Core Component's Equations. Right-mouse clicking on an
existing Core Component accesses this dialog. Right clicking on an object in the MB
environment causes a list of menu options that are specific to that object to appear in a
"context menu". If the Current User is an Owner, then the context menu command

"Access Settings..." can be selected.

On the left-hand side of the dialog the Group for which Access Values are to be
set is selected. On the right-hand side of the dialog the access values for the currently
selected Group are specified. The current options shown in Figure 39 indicate that any
user belonging to Group 1 only has the ability to view the Equations associated with the
currently selected Core Component. Similar dialogs are available for specifying the

access settings for a Subsystem Component and a Model File.
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i Core £ quation Acc

Group: Access Value
Group 1 4 Read fv
Owner Read / Modi
Group 2 None
World
oK I Cancel

Figure 39. Specifying Access Settings.

4.3.3 Enforcement of Controlled Access

When a model has been created with various access-control settings, enforcement
is then left to the MB environment. Enforcement is accomplished by determining the

access value for the Current User to each of the Access-Controllable objects, as described

below.

Core Component's Equations

¢ None - Upon attempting to access the equations, a Dialog similar to the one shown in
Figure 40 appears. This dialog is the interface used for editing Equations. However,
notice that instead of displaying the list of Equations associated with the Component,
a set of asterisks appears. Also, the buttons on the right-hand side of the screen which

normally support the adding, editing, and deleting of equations are disabled.
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¢ Read - The actual Equations are displayed in the dialog of Figure 40. The Add, Edit,
and Delete buttons are disabled.
e Read/Modify - The actual Equations are displayed in the dialog of Figure 40 and the

Add, Edit, and Delete buttons are Enabled.

Cquonons

Definition:
r"* :
o] P Agd
JAclalak :
{varcioi : .
Description:

oK Cancel

Figure 40. Restricted Access to Equations.

Subsystem Component Contents
e None - When an attempt is made to open a Subsystem, a message is displayed

indicating that the Current user does not have permission to open the subsystem.
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e Open - The contents of the Subsystem can be examined, but substantive
modifications are not allowed. Some types of restricted modifications are editing
Equations and Adding and Deleting Components, Ports or Connectors.

e Open/Modify - The system behaves as normal, with no restrictions on modifying the

Subsystem's contents.

Model Files

e None - When a Model File is opened and it is discovered that the Current User
doesn't have the proper access permissions, then a message is displayed indicating
this fact. The contents of the file are not loaded.

e Load - There are no restrictions on modifying the contents of the Model file, but it is
not possible to save any changes that were made. Upon attempting to save a Model
File, a message is displayed indicating this fact.

e Load/Save - The system behaves as normal, with no restrictions on loading or saving

Model Files.

4.4 Two Illustrative Examples

The utility of the features described in the previous section can be illustrated by
considering two scenarios where the use of the tools would be of benefit. First, consider
a company that has been commissioned to design a model of a mechatronic system. The
model is to be placed in a feedback control system. The commissioning company desires

to use the model and test various control strategies using various inputs. Under these
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conditions, the commissioned company might develop the model shown in Figure 41. In
this figure, the Duty _Cycle and Sum Junction are Core Components and the Control,

Plant and Measurement are Subsystem Components.

‘A Modell

FO— PP

Duty_Cycle Control Ptant

ua;lﬁ

Measurement

Figure 41. A Feedback Control System

Consider four groups of individuals that may have access to this model file and
the way they would use the modeling environment. First is the company that is
commissioned to create the model. When the person who initiates the project creates a
new Model file, that person's user name is automatically added to the Owner list. Then,
if the model development was a team project, that person would add the user names of
the other people on the team to the Owner group. After a working model was completed,
it would be the responsibility of one of the Owners to decide which parts of the model

should be accessible members of Group 1, Group 2, and World.
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Suppose that the development team decides that an in-house team should be
formed to validate the model before sending it off to the customer. They further decide
that they don't want any changes to be made to the plant model by the development team,
but want them to be able to examine it. In this case, the user names of the members of
the validation team would be placed on the Group 1 list and the access value for the plant
Subsystem set to "Open". When the validation team uses the model, the find that they
can look at the contents of the plant model, but are not allowed to modify any significant

properties.

The development team then decides to specify one user name for their customer
and puts that name on the Group 2 list and sets access to the plant Subsystem to "None",
allowing the customer the ability to use the plant model, but not to have access to its
details. Finally, the development team decides that anyone else who might gain access to
the model should have no access to the file at all. The World group access value is

therefore set to "none".

As a second scenario, consider an educational environment where the modeling
environment is to be exploited as a "virtual laboratory", in a way similar to the scenario
described by Rosenberg (1991). In this situation students are given a description of a
mechatronic system and asked to create a model of the system. To make this learning
experience as valuable to the students as possible, it would be particularly useful if the

students were asked to "validate" the models they generate by comparing their numerical
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results with experimental results. Unfortunately, as is often the case, the lack of

resources often make this goal unattainable.

However, using the tools of controlled access, a professor, classified as the model
owner, creates a "true" model of the system that captures the response of the system with
the desired level of fidelity. The instructor adds a User Name for the teaching assistant to
the course to the Group 1 list. The access values for Group 1 are set such that the TA has
complete access to view the model contents, but no access to change model properties.
The list of students in the class is then added to the list of member of Group 2. The
access permission settings for Group 2 would then be specified to give the students
appropriate access to the model details, as determined by the instructor. Students would
then be able to construct their models, design "experiments" on the instructor's model,
and "validate" their results by comparing them to response of the instructor's model.
Finally, the instructor decides to post the model file on the course web page for easy
student access. Not wanting to discourage curiosity by others not participating in the
class, but not wanting to give free access to the material meant for students, the instructor
sets the same access values for World as for Group 2. In addition, the Model File access
value for the World members is set to "Load" so that member of the World group cannot

run experiments based on different model settings.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER §
CONCLUSIONS

5.1 Summary of Contributions

The completed research described in this document represents a unique and
significant contribution to the area of mechatronic systems modeling. The principal
objective of designing data structures, formulating new concepts and organizing existing
information for the use in mechatronic systems modeling has been accomplished.
Effective use of the ideas formulated in this document help to simplify the modeling
process, decrease the effort required in generating new mechatronic modeling
components and systems, and make it possible to control access to a finer level of model
details. These benefits support both industrial needs, where design cycle times are a
critical factor, and academic needs, where simplified designs allow students to focus on

relevant modeling issues, not on implementation details.

A specific discussion of the major contributions of this work is presented in the
next four sections. Section 5.1.1 addresses contributions that were made in relation to
Template design. Library tools that were designed and implemented are listed in Section
5.1.2. An implementation environment that was created as part of this work is covered in
Section 5.1.3. Section 5.1.4 presents the concepts and organization of ideas concerning

controlled access to a mechatronic system's properties.
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5.1.1 Template Design

In CHAPTER 2 the importance of a relatively new modeling paradigm, the
specification of User-Defined Model Types (UDMTs), was discussed. Currently there
are several modeling environments that support this feature. As part of this work a new
data structure, called a Template, was defined. A Template describes the properties of a
UDMT. The Template design presented here represents a new way of organizing
information about mechatronic system models. The organization provides a different
perspective for thinking about the way in which UDMT are defined and their role in
creating models of mechatronic systems. The Template definition includes a modeling
structure, called the General Multiport, a set of constraints that prescribe desired behavior
for instances of UDMTs, and a set of default properties. The explicit use of constraints to
prescribe the way in which instances of UDMTs can be modified and classified is a new

and unique.

A definition of the General Multiport modeling structure was also part of this
work. The General Multiport is specifically designed to support models of mechatronic
systems and components, hierarchical design, and model reuse. The properties of a
General Multiport describe the range of properties of possible models that can be built.
The fundamental definition presented is an extension of previous work. The definition is
sufficiently general to allow for definition of a large class of practical engineering

models.
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A Template defines a unique way for organizing the properties of a UDMT and
provides ways to specify functionality in a modeling environment that was not previously
possible. Specifically, the Template definition makes it possible to
(1) bound the allowable configuration of a model's properties,

(2) derive new Templates based on existing Templates, and

(3) structure and classify a set of Templates in useful and meaningful ways.

The usefulness of the these features was demonstrated by considering possible
ways that they could be exploited in a modeling environment for mechatronic systems.
The first feature makes it possible to ensure that the way model instances are used is
consistent with the Template definition. The second feature provides a means to simplify
greatly the process of defining a new Template and gives an improved method for
providing a natural structure to a set of Templates in a library. The third feature aids in
the process of browsing the contents of a model library with a large number of model

types. This benefit is discussed in the next section.

5.1.2 Library Tools

Tools for browsing the contents of a library of model types were designed and
demonstrated in this work. The Template data structure made this design possible. The
way in which these tools are designed and operate has not been previously exploited.
Three methods were presented for searching the contents of a library of modeling

templates.
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e By Keyword - One of the attributes of a General Multiport definition is a set of
keywords. MB provides a mechanism for searching through a list of Templates and
finding ones with matching keywords.

e By Constraint - The constraints that are specified in a Template help to define the
way in which a model instance behaves. MB provides tools for searching through a
list of Templates according to constraints. This tool can be particularly useful since,
unlike keywords, the constraint description is guaranteed to relate directly to the
actual Template definition.

e By Generation History - A new Template is created by using an existing Template as
a parent. The new Template inherits the constraints specified by the parent. This
parent-child relationship presents a natural a tree-structured ordering of a set of

Templates, and it can be useful when searching the contents of a Template Library.

5.1.3 Environment Implementation

The efficacy of the ideas expressed regarding Template design and Library Tools
were demonstrated by implementing a mechatronic system modeling environment, called
the Model Builder (MB), that is based on Template concepts. In this environment the
only pre-defined modeling type is the General Multiport, from which a set of User-
Defined Modeling Types can be generated. This feature makes it possible for the
environment to be flexible and customizable, suiting the specific needs of the user. It
also provides the opportunity to exploit the environment as a teaching tool. Requiring
students to thoughtfully create a new model type for a specific design would expose them

to a broader range of modeling experiences.
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Another benefit of this implementation is that it serves as a framework for future
research efforts. The investment that is required to create a user-friendly, graphically
driven, general-purpose environment for mechatronic systems modeling is significant.
Much of this work does not involve research-specific issues and can be time consuming
and tedious. Fortunately, now that a fundamental environment exists, it can be exploited

and extended in new areas related to mechatronic systems modeling.

5.1.4 Controlled Access

A need for more sophisticated tools for limiting the ways in which models of
mechatronic systems are viewed and modified was identified. In response to this need
the concept of controlling the access to various model properties was proposed. This

design represents a unique confluence of three areas.

e Data Structures of Mechatronic System Models - The attributes of the General
Multiport were used as a basis for specifying the various access properties.

e Information Sharing - The need for sharing files between individuals jointly working
on a modeling effort and the trend to make models available in a public setting
motivated the concept of information sharing.

e Control of Access to Data - Well-understood concepts associated with protecting data
files stored on an operating system were used as the basis for controlling access to

data.
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The ideas presented make it possible for a person who accesses a model to be
classified into one of several pre-defined groups. According to the specification of the
model owner, each group can have a unique combination of access permissions to various
aspects of a model. Permissions range from unfettered access, to read-only access, to no

accCess.

The concept of controlled access was demonstrated by implementing a design of
these features in the MB modeling environment. Controlled access was implemented
after MB was completed according to the goals of Template design. The implementation
effort of controlled access was relatively simple. This result supports the assertion that

the MB environment can serve as a framework for future research.

5.2 Areas for Future Research

This section lists several areas that could be further investigated. The suggestions
are divided into four groups. Section 5.2.1 presents ideas for tools related to the design
of a Template. Library related suggestions are listed in 5.2.2. Issues relevant to the
implementation environment are covered in Section 5.2.3. Topics regarding controlled

access are given in 5.2.4.

5.2.1 Template Design

1) Enhanced General Multiport definition - The design of the General Multiport
presented here is useful for modeling a large class of physical systems. However,
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there are other modeling structures that have been explored by others that should be

incorporated in this design. Some of these areas are discussed below.

a) Discrete variables - Many mechatronic systems designs are hybrid in nature, in
the sense that they combine continuous and discrete variables (Elmqvist, et. al,
1993). A system that uses a digital controller is a typical example. The General
Multiport definition should support hybrid systems.

b) Discrete events - A related topic to discrete variables is discrete events, such as
the opening or closing of an electrical switch. Methods for handing discrete
events have been proposed, (Karmopp, 1988; Lorenz, 1993), but further research
in this general area is needed. However, ways to incorporate discrete events in
the General Multiport definition should be explored.

c) Vector Ports - It can be helpful to represent a group of Ports as a data single
structure. Many issues regarding this concept have been previously explored
(Breedveld, 1985). This feature can greatly simplify both the way a model is
displayed and the way in which the model is conceptualized.

2) Improved parent-child relationships for Templates - In the current implementation
environment, when a child Template is derived from a parent, the inherited properties
are passed on by essentially making a copy of the inherited attributes and passing
them on to the child. This scheme leads to a duplication of data. A more
sophisticated implementation would exploit the relationship information as a
mechanism of inheritance; e.g., a child Template could refer to its parent to determine

some of its properties.
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3) Additional constraint definitions - In the current implementation, a set of constraints
was defined that prescribe properties such as the number of Ports, the direction of the
Ports, the form of the equations as a set, and the form of individual equations. This
set of constraints can be used to define a set of model types. However, it would be
beneficial to investigate additional way in which to constrain the properties of a
General Multiport, giving rise to more specialized behavior.

4) Additional types of Templates - The Template ideas expressed in this dissertation
were only discussed in relation to a General Multiport. However, the notion of a
Template description for any modeling object is equally applicable. For example, it
is possible to define Port Templates and Equation Templates. In fact, this idea was
investigated and used in the MB modeling environment to some extent; a partial
definition of a Port Template was defined and exploited. However, a more thorough
investigation is required.

5) Educational benefits - The concept of using constraints to prescribe a desired
behavior of a very general modeling construct is unique. However, it is a useful way
to organize one's thinking about modeling in general. The potential benefits of
presenting Template ideas in a learning environment should be more carefully

explored.

5.2.2 Library Tools

1) Enhanced logical combination of filters - In the current implementation, a set of
filters is chosen. For a Component in the library to match the filter, it must have all

of the keywords listed in the filter. This result can be thought of the logical "AND"
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combination of the items on the filter. Allowing for different logical combinations of
the filter items would make the search tools more flexible. For example, it would be
useful to be able to specify a search for any Component that matches the keyword
"Two Ports" OR "Transducer".

2) Keyword management - Currently, when a new template is created, a set of keywords
is associated with it. The keywords are used later as a searching tool to assist a user
in finding a useful model. However, the searching benefit can be degraded if the
keywords used to describe a given model are not carefully chosen. For example,
suppose two modeling components that were defined were energy conserving. If one
model was given the keyword "Conservative" and the other was given the keyword

"Energy Conserving", searching efforts could be hampered.

One way to deal with this issue is to have a database of keywords. When a user must
decide upon the set of keywords to associate with a model, the keywords must be
chosen from the database. If this scheme is used, then there must also be tools for
managing the contents of the keyword database. These ideas require additional
thinking and effort and would be of great value in a modeling environment.

3) Automated tools for sharing templates - In the current implementation of the MB
environment, automated modeling tools have been defined for creating and editing
Templates. However, after a Template is created in one environment, there are no
automated tools for exporting the template for use in another system. This area

should be investigated to support this facility.
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4) Browsing model instances - The library browsing tools discussed in this document
apply to a library of Templates. A useful feature would extend this ability to browse

the contents of model instances.

5.2.3 Implementation Environment

1) Improved visualization tools - Additional insight into a system model can be gained
by using various visualization techniques, such as those discussed by Ermer (1994).
Some possible extensions in the MB environment include 3-dimensional model
representations and power flow animations of simulation results.

2) Interface with other environments - The MB modeling environment provides tools for

~ a subset of Computer Aided Engineering. It would be useful to support dynamic
interfacing with other major types of CAE tools, such as finite element modeling
tools. In this way the strengths of both environments can be exploited.

3) Compiled simulation code - In the current implementation, the equations of the
system are ported to MATLAB as an "M-File" (Mathworks,1999). While this
approach is functional for smaller problems, it can increase simulation times greatly

when models get larger.

5.2.4 Controlled Access

1) Provide for a finer level of access control - In this dissertation, the principle of
controlled access that has been previously applied to files as a whole was extended to
various features of a multiport model. This extension gives a greater flexibility in
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specifying how an instance of model should accessed. Applying access control
concepts to even finer levels of detail of a model can extend this basic concept even
further. For example, instead of controlling access to an entire set of equations
associated with a Component, it might be useful to restrict access to a subset.

2) Controlled Access to Templates - The ideas of controlled access were applied
instances of models. The benefits of controlled access could also be exploited by

controlling the access to Templates.
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APPENDIX
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APPENDIX

IMPLEMENTATION DETAILS

The Model Builder Environment that was developed as part of this research effort
consists of over 55,000 lines of code, expressed in over 100 files and nearly 95 classes.
Due to the scope of this project, it was not deemed useful to present a verbatim listing of
the code text. Instead, this appendix presents an overview of the implementation and
directions for understanding the code structure. The information presented here, intended
as a guide to assist future development, is given in two major categories. First, the
organization of the major C++ classes that define the MB environment are presented.
The class diagrams follow the Object Modeling Technique (OMT) described by
Rumbaugh et. al. (1991). Second, the name and general purpose of the major text files

that are used to create the MB environment are given.

Class Structure

The Object Modeling Technique was developed in an attempt to create a standard
for communicating an abstract description of code structure based on object-oriented
programming paradigms. These ideas are not related to any particular object-oriented
programming language. However, since MB was developed in C++, the OMT notation

will be discussed in terms specific to this language.

Using the OMT, squares represent a C++ class. Lines connecting two classes

indicate a relationship between the classes. The precise nature of each relationship
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depends on the classes involved in the relationship. An Annotation at one end of a
relationship line indicates the role that the class plays in the relationship. A circle at one
end of the relationship indicates that multiple class instances may participate in the
relationship. The relationships are generally implemented using object pointers. A
triangle indicates a parent-child relationship exists between two classes. For a more

complete description of the notation used, consult Rumbaugh, et. al. (1991).

An Object Diagram, representing relationships between the major classes in the
Model Builder environment, is shown in Figure 42'. A general class for describing
objects that are stored in a model or a graph is the CGraphObject class. This class is an
abstract class that defines data common to objects that might be contained in a model.
There are no direct instantiations of this class. Four classes are derived from the
CGraphObject class, CComponent, CPort, CConnector, and CLabel. The CComponent
class is further derived into the CCompMacro class, for Macro Components, and the
CCompAtom class for Atom Components. The CCompMacro class stores a list of
pointers to other CGraphObjects. Each CCompMacro may display its objects in a
window created from the CMBView class. The CComponent class is associated with a
CTmpClass, which store Template information for a Component. A parallel structure

exists for Ports, although the Port Template ideas are not fully exploited at this point.

' The names of two model properties changed from the time the code was originally generated to the time
this document was prepared. In the code Subgraph Components are called Macro Components, and Core

Components are called Afom Components. The original names are used in this section.
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Figure 42. The MB Object Diagram.

Displays Content

top

parent

The CMainFrame class is used to store application specific data, i.e., data that
does not depend on the current model. MB has a Multiple Document Interface (MDI),
meaning that more than one model file can be opened at one time. This structure is
supported by having multiple CMBDoc classes related to the CMainFrame class. Each
CMBDoc stores and manages data specific to a model file. The most important

information stored in the CMBDoc class is a pointer to the "top” CCompMacro. Each
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CMBDoc class stores exactly one CCompMacro. The CMainFrame class also stores a

list of CTmpComp and CTmpPort classes.

A set of tools for operating on the contents of a model are associated with the
CMainFrame class: the abstract class CTool and its derived classes, CToolSelect,
CToolDelete, CToolConnect, and CToolAdd. These classes group tasks for carrying out

actions to manipulate the contents of a model or graph.

The tools to support Controlled Access are contained in the two classes
CAccessGroup and CAccessSetting. Each instance of the CMBDoc class stores a set of
pointers to CAccessGroup classes. The CAccessGroup class stores a list of strings that
represent the users that belong to it. The CAccessSetting stores an access value and a
pointer to a CAccessGroup. This information is used to define restrictions to accessing
the attributes of various other classes. CAccessSetting classes are associated with the
CMBDoc class, to control access to model files, and to the CGraphObject class. Classes
derived from CGraphObject must implement their own functions to support Controlled
Access. The CCompMacro class implements Controlled Access for its contents and the

CCompAtom class implements Controlled Access for its Equations.

File Structure
The above class structure was realized in a set of C++ class definitions, contained
in text files. The main files used in the MB environment and a brief description of their

contents is given in this section.
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Table 4. Major Files Used for Creating the MB Environment.

File

Contents

MBClasses.h

Headers for most of the classes used in MB.

Components . cpp

CGraphObject, CComponent, CCompAtom, and
CCompMacro class definitions.

GraphObjects.cpp

CPort, CConnector, and CLabel class definitions.

MainFrame.cpp

CMainFrame class definition.

MBDoc . cpp

CMBDoc class definition.

MBView.cpp

CMBView class definition.

Templates.cpp

CTmpComp and CTmpPort class definitions.

EditTools.cpp

CTool, CToolSelect, CTool Connect, and CToolAdd class
definitions.

Equation.cpp

Class definitions for defining and manipulating equations.

Constraint.cpp

Class definitions used to specify and evaluate constraints.

Access.cpp

CAccessGroup and CAccessSetting class definitions.

PSTmpComp .h

Headers for the classes used in the Template
creating/editing wizard.

Common . cpp

A set of general purpose, global functions.
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