
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print colored or poor quality illustrations and
photographs, print bieedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9' black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

UMI’
800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

COMPUTER AIDED ENGINEERING TOOLS FOR
STRUCTURED MODELING OF MECHATRONIC SYSTEMS

By

Michael Keith Hales

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment o f the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department o f Mechanical Engineering

1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number 9963334

UMI*
UMI Microform9963334

Copyright 2000 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ABSTRACT

COMPUTER AIDED ENGINEERING TOOLS FOR
STRUCTURED MODELING OF MECHATRONIC SYSTEMS

By

Michael Keith Hales

Industry is continually faced with pressures to develop improved products while

decreasing design-cycle times. Complex designs o f mechatronic systems, which

incorporate modeling elements from multiple engineering domains and embedded control

subsystems, can be particularly challenging. Computer Aided Engineering tools, such as

mathematical modeling, have proven useful because they allow engineers to consider

more design alternatives in shorter amounts o f time. As part o f the mathematical

modeling effort, considerable resources can be dedicated to creating a new model for a

particular purpose. Tools that help ease the burden o f new model development and

directly support mechatronic modeling are therefore o f particular importance.

Structured, reusable mathematical models o f common engineering components

help to simplify the initial modeling task, to capture engineering knowledge for use in

future projects, and to support group model development efforts. Many difficult issues

are associated with implementing a structured modeling approach. A structured

modeling framework that can accurately and simply represent systems o f interest is

needed. A flexible modeling environment for modifying model properties, while

ensuring that models are not altered in ways that are inconsistent with the original design

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

intent should be developed. When many models have been defined and collected in a

library, methods for efficiently locating models that are useful for a particular purpose

become increasingly important. The desire to share models among various groups raises

the issue o f model security.

Research was conducted to investigate ways to address the above issues. As a

result o f this effort, a new modeling construct, the Multiport Template, was defined. The

Multiport Template simplifies the creation o f flexible, reusable models o f mechatronic

components and systems, helps ensure consistent model modification, leads to a natural,

meaningful classification and ordering o f models, and supports multiple library searching

methods. Additional data constructs, used in conjunction with the Multiport Template,

provide control o f access to various model properties by different types o f users.

The usefulness o f the Multiport Template design was demonstrated by

implementation of a particular modeling environment. Examples are presented that

demonstrate how the modeling tools developed allow for completion o f tasks that were

not previously possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

To my family

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ACKNOWLEDGEMENTS

The completion of any significant endeavor in life, though often credited to an

individual, is not the result of the efforts o f one person. My completion o f this advanced

degree is no exception. Along the way I have been the recipient o f assistance from

countless individuals who have increased my understanding, directed and redirected my

efforts in the right direction, corrected my errors and misconceptions, set challenging

expectations for me, and given me support and understanding when I needed it the most.

To all o f these, I express my gratitude.

Among the many people who have contributed to my current success, I would like

to call the attention to a select few. First is my academic advisor, Dr. Ron Rosenberg. I

have worked with Dr. Rosenberg for six years, two years for a Master o f Science degree

and four years for a Ph.D. Throughout this time we have had many meetings and

discussions, often trying to convince each other that our ideas were correct. In many

instances they turned out to be the same idea after all, expressed from opposing

perspectives. I have learned from his experience and insight and appreciate all the time

and effort he has given in my behalf.

The other members o f my committee, Dr. Radcliffe, Dr. Mukheijee, and Dr. Zeid,

served as a valuable resource for ensuring that my work was of significant caliber. I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

would like to thank them for challenging my ideas, pressing me to think about the unique

contribution that I was trying to make, and for supporting me during difficult times.

I would be remiss if I did not also pause to express gratitude for the members of

the family in which I grew up. Our unique blend o f strengths and ambitions has been part

o f what has given me the drive and determination to pursue my goals. I would especially

like to thank my mother for the extra support she gave at the end of this effort.

Finally, my deepest respect and gratitude goes to my wife, Julie. Without her

love, sacrifice, and support, this accomplishment would be have been unattainable.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS

LIST OF TABLES.. ix

LIST OF FIGURES................................. xi

CHAPTER I INTRODUCTION.. 1
1.1 Background.. 1
1.2 Area o f Research and Scope... 4
1.3 Research Issues.. 5
1.4 Research Objectives...9
1.5 Dissertation Organization. ..10

CHAPTER 2 DESIGN OF A MODELING ENVIRONMENT...12
2.1 Introduction.. 12

2.1.1 Design Considerations for a Modeling Environment....................................... 15
2.1.2 Previous Work.. 17
2.1.3 Approach...19

2.2 Definition o f a General Multiport.. 20
2.2.1 Topological Properties..21
2.2.2 Parametric Properties.. 22
2.2.3 Functional Properties.. 23
2.2.4 Display Properties...26

2.3 Templates... 27
2.3.1 Working With Instances and Templates..28
2.3.2 Working with Templates...31
2.3.3 Implications of Inheriting Constraints... 32
2.3.4 Template Libraries...34

2.4 Illustrative Examples.. 38
2.4.1 A Template Definition.. 39
2.4.2 Creating and Classifying UDMT Templates..42

CHAPTER 3 IMPLEMENTATION OF A MODELING ENVIRONMENT....................45
3.1 Implementation Background..45

3.1.1 Previous Work... 46
3.1.2 Contents o f Chapter.. 49

3.2 Creating and Editing Component Models... 49
3.2.1 General Features.. 49
3.2.2 An Example.. 52

3.3 Creating and Editing Templates...54
3.3.1 Creating a Solenoid Template.. 54
3.3.2 Deriving a New Template From an Existing Template................................... 71

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.3 .3 Editing Existing Templates...74
3.4 Library Browsing Tools..76

3.4.1 Keywords Filters... 76
3.4.2 Constraint Filters...77
3.4.3 Generation History Display... 78

CHAPTER 4 CONTROLLED ACCESS...80
4.1 Introduction.. 80
4.2 Design of a Controlled Access Environment.. 81

4.2.1 Access-Controllable Attributes.. 82
4.2.2 Users and Groups...84
4.2.3 Group Access Settings... 86

4.3 An Implementation of Controlled Access.............. 87
4.3.1 Current User And Group Members..................... 87
4.3.2 Specifying Group Access Settings..89
4.3.3 Enforcement o f Controlled Access...90

4.4 Two Illustrative Examples..92

CHAPTER 5 CONCLUSIONS.. 96
5.1 Summary o f Contributions..................... 96

5.1.1 Template Design...97
5.1.2 Library Tools.. 98
5.1.3 Environment Implementation..99
5.1.4 Controlled Access...100

5 .2 Areas for Future Research... 101
5.2.1 Template Design... 101
5.2.2 Library Tools...103
5.2.3 Implementation Environment.. 105
5.2.4 Controlled Access... 105

APPENDIX Implementation Details... 108

REFERENCES...114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF TABLES

T ablet. Port Variable Names.. 63

Table 2. A Set o f Equations for a Field Controlled DC Motor...73

Table 3. Three Access-Controllable Objects and Their Possible Access Values.............83

Table 4. Major Files Used for Creating the MB Environment... 112

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF FIGURES

Figure 1. A Scalar Gain Block...13

Figure 2. Three Areas Related to Modeling... 14

Figure 3. Improperly Modified Bond Graph, 1-Port, C-Type..16

Figure 4. A General Multiport.. 22

Figure 5. Two Types of Multiport Components... 26

Figure 6. Working with an Instance and Template...28

Figure 7. Working With Templates.. 32

Figure 8. Parent-Child Structure of Templates..34

Figure 9. Two Paths for Generating a Template... 38

Figure 10. A Template of a PMDC Motor...40

Figure 11. Deriving New Templates.. 43

Figure 12. Model Builder Environment... 51

Figure 13. An Instance of Bond Graph, One-Port Capacitance Component......................52

Figure 14. Editing the Capacitance Component's Equations...53

Figure 15. A Solenoid Component... 54

Figure 16. Solenoid Template: Initial Form.. 55

Figure 17. Solenoid Template: General Properties.. 57

Figure 18. Solenoid Template: Number o f Signal Ports...58

Figure 19. Solenoid Template: Number o f Power Ports, Option 1.............................59

Figure 20. Solenoid Template: Number o f Power Ports, Option 2............................ 60

Figure 21. Solenoid Template: Editing Power Port Properties.............................. 61

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 22. Solenoid Template: Specifying the Coil Port Properties.................................62

Figure 23. Solenoid Template: Specifying the Slug Port Properties................................ 64

Figure 24. Inductance o f Coil as a Function o f Slug Position...66

Figure 25. Solenoid Template: Default Parameters... 67

Figure 26. Solenoid Template: Defining Default Parameter...68

Figure 27. Solenoid Template: Default Equations.. 69

Figure 28. Solenoid Template. Slug Force Equation.. 70

Figure 29. Solenoid Template: Summary Page.. 71

Figure 30. An Instance of the Solenoid Template Icon.. 71

Figure 31. A Field-Controlled, Non-Linear, DC Motor Icon...72

Figure 32. Permanent Magnet DC Motor Icon..74

Figure 33. Filtering Templates by Keywords..77

Figure 34. Filtering Templates by Constraints.. 78

Figure 35. Template Generation History Display... 79

Figure 36. Organization o f Groups and Users...85

Figure 37. Specifying the Current User... 87

Figure 38. Interface for Editing Group Members... 88

Figure 39. Specifying Access Settings...90

Figure 40. Restricted Access to Equations.. 91

Figure 41. A Feedback Control System... 93

Figure 42. The MB Object Diagram... 110

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 1
INTRODUCTION

1.1 Background

Engineers have come to rely on computers to complete an increasing number of

tasks. During the course o f a day, it would not be unusual for an engineer to use a

computer to perform a numerical analysis, communicate with a colleague through email,

search the Internet for crucial engineering data, and work on a technical document.

However, despite the many ways in which computers can enhance the engineering effort,

it is somewhat astonishing to note that there is a tremendous gap between the way

computers fundamentally operate (the binary state o f a set o f electrical switches) and the

way humans naturally think (spatial relationships, physical images, abstract reasoning,

etc.). Computers are useful because o f efforts to bridge this gap. What are some of the

ways in which computers are made more useful? An answer to this question can lead to

directions o f future efforts to further increase the usefulness o f computers.

Initially, computers became more useful by teaching humans to think like

computers. This result involved humans learning rather cryptic computer languages, like

Assembly, to perform low-level tasks, such as "moving" and "pushing" variable values

around in computer memory. This demanding approach requires large amounts of time

from highly skilled individuals (computer programmers). Even simple tasks can involve

complex instructions to the computer.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Another way computers can become more useful is to "teach" computers to think

more like humans (Dertouzos, 1997). An early advancement in this area was the

development o f the FORTRAN computer language (ANSI, 1966). FORTRAN improves

the way humans communicate with computers in several ways. One improvement comes

from the definition o f data structures that support commonly used ideas and concepts.

For example, FORTRAN supports many different variables types, such as character

strings, integers, and complex numbers. Another improvement is in the specification o f a

more "human-like", natural syntax for instructing the computer to complete common

computer tasks. This feature is helpful because it reduces programming efforts and

makes it easier to remember commands. Another improvement comes from an

organization o f data into meaningful groupings. For example, code for performing a

common task can be grouped in a subroutine. This ability helps to simplify computer

instructions and also makes it possible to reuse a given set of instructions in multiple

contexts.

Two observations of the above discussion are important to consider. The first

observation is that the existence o f FORTRAN does not change the fundamental

computing ability o f computers. Put another way, any set o f computer instructions

written in FORTRAN could also be written in Assembly. If this statement is true, then

what is the added value o f creating improved data structures, syntax, and organization?

The second observation addresses this question: the benefit is that the way computers are

instructed to perform a given task is brought into closer conformity with the way humans

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

reason about performing that task. This benefit results in a decreased investment o f time

and greatly improves productivity.

The trend to simplify the way computers are instructed has continued. Object-

oriented programming languages like C++ (ISO, 1998) have been developed. These

languages have data structures, syntax, and an organization that more naturally reflect the

ways humans reason about the world (Pressman, 1992). Computer operating systems

have evolved from text based, command-line driven tools to graphical, mouse-driven

interfaces. Fewer people use computer languages directly. Instead, computer

programmers use the computer languages to create computer software to perform specific

tasks. Tasks that are cumbersome to complete using a computer language are almost

trivially performed using a computer program. For example, using FORTRAN to

generate a finite element mesh for a complex, 3-dimensional object, is a formidable

undertaking. However, programs like ANSYS (Swanson Analysis Systems, Inc., 1998)

can be used to perform this task at the click of a button. For each o f these advancements,

the above observations apply, i.e., communication with computers is simplified, but

fundamental computing power is not increased.

Computer software, therefore, can enhance the engineering effort by bringing the

performance o f the computer more in line with human thought and by reducing the

computer-specific knowledge that is required to solve engineering problems. The general

area in engineering that uses computer tools for this purpose is often referred to as

Computer Aided Engineering (CAE). The general purpose o f this dissertation is to

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

explore ways in which to enhance engineering efforts through improved CAE tools. The

approach followed is similar to the trend previously outlined. Enhancements will be

sought by searching for ways in which new data structures, problem representations, and

information organization can be exploited.

1.2 Area of Research and Scope

CAE covers a broad class of tools for many different engineering applications.

The research described in this document will focus on computer support for one area of

increasing engineering interest, the dynamic behavior o f mechatronic systems. As

opposed to a static response, a dynamic response is one in which relevant system

parameters significantly evolve over a time period of interest (Umez-Eronini, 1999).

Whether a system is considered dynamic or not is a subjective decision and depends on

engineering judgement and operating conditions (Stein and Rosenberg, 1991). For

example, an automobile's rack-and-pinion steering system may be treated as a static

system when evaluating its response under freeway driving conditions, but it may be

considered a dynamic system when evaluating its response during a high-speed race.

Mechatronics is a relatively new term with somewhat varying definitions

(Auslander, 1996; Comerford, 1994; Buur, 1992); however, common ideas have

emerged. In this dissertation, a mechatronic system will be defined as one that has two

general features:

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1) it is composed o f components from multiple engineering domains, such as

mechanical, electrical, hydraulic, acoustic, thermal, and magnetic; and

2) it has integrated automatic control subsystems as an inherent part o f its design.

There are many areas in which computers can support an investigation into the

dynamic response o f a mechatronic system. One area is system representation. Initially,

a model of a system to be investigated must be constructed. The model could take one of

many forms, including a set o f mathematical equations, a qualitative description of how

the system behaves, or a physical description o f the model's properties. Another area is

system transformation. For example, at some point a model must be transformed into a

representation that is suitable for numerical simulation. The numerical simulation itself

is another area. There are many algorithms for performing numerical simulations, and a

variety o f strategies for selecting a suitable algorithm.

The research described in this document deals primarily with creating and

working with model representations. These issues related to these topics are addressed

in more specific detail in the next section.

1.3 Research Issues

Mathematical modeling o f mechatronic systems and the corresponding computer

tools that support it generally have been successful in supporting mechatronic system

design. "Virtual prototyping" can decrease the need for physical prototyping and thus

reduce design cycle time and design development costs. However, there are constant

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

pressures in industry to further decrease design cycle times, reduce development costs,

and consider increasingly complex designs. Also, the large resource investments, in

terms of time and money, that are used to create models for a specific modeling purposes

are, unfortunately, not always available to use in future efforts. These observations

indicate a need for improved modeling tools that make the model building process as

easy and efficient as possible and support model reuse. In general terms, an improvement

in computer tools can improve productivity (Gibbs, 1997). An improved modeling

environment that decreases the modeling effort benefits both industry and academia.

Simplified modeling tools reduce the learning overhead and allow those using the tools to

focus on more relevant modeling issues.

Another issue in mechatronic systems modeling is the inherent multidisciplinary

nature o f mechatronic systems. One class o f modeling software is based on fixed

input/output information flow, a subset o f which is block diagrams. Simulink

(MathWorks, 1999), SystemBuild (Integrated Systems, Inc., 1994), and Easy5 (Boeing,

1998) are typical examples. These types o f software are widely used in both academia

and industry. However, Otter and Cellier (1996) discuss why these modeling constructs,

while quite useful for controller design, are not the best-suited tools for modeling

physical systems, despite assertions to the contrary (Fritchman and Hammond, 1993;

MathWorks, 1998). One reason supporting this assertion is that the fixed input/output

nature o f block diagrams deters model reuse, since a component model's input/output

structure may depend on its use in a particular system. This weakness can be especially

troubling in a large, hierarchical model. Another reason is that the representation of

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

component models can be confusing since interactions are limited only to signals. A

third reason is that there are no general tools for working with transducer components.

Cellier (1992a) indicates that a more appropriate modeling approach would include

power-based interactions, enabling descriptions of physical components that are much

closer to reality. The use o f power-based interactions also helps a modeler to avoid some

common modeling errors by enforcing conservation of energy laws.

Due to these reasons specified above, modeling data structures intended to

support mechatronic systems modeling should support both data and power flows. Some

examples of previously defined tools that are specifically designed for systems composed

o f components from multiple power domains are bond graphs (Kamopp, et. al, 1991),

object diagrams (Otter, 1997), SIDOPS+ (Bruenese and Broenink, 1997), and Modelica

(Mattson and Elmqvist, 1998). These tools are finding increased attention and

acceptance as is evidenced by computer software that is based on these tools, such as

ENPOR.T (Rosencode Associates, Inc., 1995), 20Sim (Controllab Product, 1998),

Dymola (Dynasim, 1999), and AMESim (IMAGINE, 1996).

Another modeling issue involves the support provided for model reuse. Currently,

many modeling environments support component model reuse by supplying a set of pre

defined model types, contained in a fixed library. A weakness o f pre-defined model

types arises when one wishes to modify certain properties of a component based on that

type. The ways in which a model's properties are modified can be quite limited. Often

the only properties that can be changed are the model's connectivity and parameter

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

values. If a pre-defined model that precisely matches the current needs cannot be found,

then a new model must be generated from scratch. A good modeling environment should

support increased editing capabilities o f library components.

In another effort to support model reuse, a modeling environment may provide

support for a specialized model definition, referred to here as User-Defined Model Types

(UDMTs). This approach allows a user to define a new model type, in a way similar to a

modeling environment supplying pre-defined types. In many cases, UDMTs are defined

using a fixed-form, programmatically specified data structure. These types o f tools

require knowledge o f highly-specialized data constructs and can be quite complex. Also,

once a new UDMT is created, it can suffer from the same problems associated with pre

defined model components, namely that modification of model properties is limited and

organization and browsing tools have limited support. On the other hand, some modeling

environments allow for essentially unlimited modification o f modeling components that

are based on UDMTs. This feature provides increased flexibility to modify an existing

model in a library to meet a new need, but it doesn't prohibit the model from being

altered in ways that are inconsistent with its original design.

Engineering model libraries may come to include a large number o f models, each

designed for a very specific purpose. As the number o f pre-defined modeling types in the

library grows, searching through the library contents to find a useful model for a current

modeling purpose becomes increasingly difficult. To address this issue, a design

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

environment should support simplified, efficient tools for organizing and browsing the

contents of a component model library.

A final modeling issue considered in this research involves the problems

associated with sharing component models that contain data requiring restricted access.

Such a situation can arise when two companies must share model information to

accomplish a systems design. Some information included in the model may be

proprietary to one o f the companies. This situation can also arise in an academic setting

when an instructor prepares a model for student investigation. Perhaps students should

have the ability to use the model to determine its behavior, but not to view its properties.

A simple approach to controlling the access to a model's properties is to "lock up" the

entire model. This approach might be accomplished using file access control properties

supplied with some operating systems. However, such an approach can lead to a design

that is far from optimal, since the control of access to the model details is limited to the

model as a whole. Therefore tools should be provided that allow an owner o f a model to

make available to a model user some o f the model details, according to the user's

classification. Such a feature allows for varying levels of security regarding both reading

and modifying model details.

1.4 Research Objectives

The principal objective o f this research is to design data structures, formulate new

concepts, and organize existing information that results in significant enhancements to

modeling environments for mechatronic systems. This design addresses the issues

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

discussed in the previous section. Specifically, the work will be divided into three areas

relating to modeling o f mechatronic components and systems:

1) creating and correctly modifying models and model types of mechatronic

components and systems,

2) organizing and browsing the contents of a library o f mechatronic model types,

and

3) controlling the access to details o f models o f mechatronic components and

systems.

Another objective o f this research is to demonstrate the efficacy o f the design

through a computer implementation. The implementation shows that the issues raised in

the previous section are addressed, and that the proposed design improves modeling

environments for mechatronic systems.

1.5 Dissertation Organization

The remainder o f this dissertation is contained in four chapters. Their contents

are described briefly in this section.

Issues related to the design of modeling environment for mechatronic systems and

components are covered in CHAPTER 2. A general purpose modeling structure for

supporting modeling o f mechatronic systems and components is defined. This data

structure is called a General Multiport. Using this data structure, a novel, template-based

approach for creating User-Defined Model Types is presented. It is shown how the tools

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

improve the way in which UDMTs are used and defined. The benefits also extend to

providing enhanced methods for classifying and browsing the contents of a set of

UDMTs stored in a library. A modeling environment implementation for mechatronic

systems that is based on these ideas is presented in CHAPTER 3.

In CHAPTER 4 a design is presented which supports the control of access to

various model properties o f mechatronic components and systems. An implementation of

the design is presented and its usefulness is illustrated with two examples.

A summary and conclusions are given in CHAPTER 5 along with a set of

recommendations for future research in this area. The appendix gives a brief description

of the implementation o f the modeling environment. This document concludes with a list

of references that were useful in carrying out this research.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2
DESIGN OF A MODELING ENVIRONMENT

2.1 Introduction

As was discussed in CHAPTER I, there is a need for enhanced modeling tools

that decrease the burden o f creating models of mechatronic systems. One strategy that

has been successfully employed in the past is the use o f a modeling structure that will be

referred to as a User-Defined M odel Type (UDMT). To understand what a UDMT is, it is

helpful to first consider the more common modeling structure, a Pre-DefinedM odel Type

(PDMT). PDMTs are basic modeling components that are specific to a modeling

environment. Their fundamental definition cannot be changed; only particular attributes

can be changed. As an example, consider a modeling environment that provides a pre

defined model o f a common component, a scalar Gain Block. To use a Gain Block

model in a system, the user creates a model instance, as shown in Figure I. The only

modifications that can be made to the instance are how it is connected in the system and

the value o f its gain parameter. This behavior, or what makes the Gain Block "act" like a

Gain Block, is intrinsically defined as part of the modeling environment and cannot be

changed; the Gain Block definition is fixed.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

y

Figure I. A Scalar Gain Block.

The use o f PDMTs has been useful in the support o f mechatronic systems

modeling. In some environments, there is no other option for building a system model

than to use the PDMTs that are supplied with the environment. In these cases, the

flexibility and customizability o f the environment is limited. No new modeling types can

be defined without a re-definition of the environment. In response to this issue, some

modeling environments provide a more general modeling structure that allows a user to

not only create model instances, but to also create User-Defined Model Types.

It can be confusing to understand some o f the issues regarding UDMTs. One

reason for this difficulty is that when dealing with model types, a more abstract way of

thinking is required. Therefore, before proceeding, it is important that the fundamental

distinction between model types and model instances be clearly understood. One way to

describe the fundamental difference is as follows: model instances describe the

properties of physical systems and model types describe the properties o f model

instances. Stated another way, model instances are based on model types. A simple

example will help to demonstrate this point. Figure 2 shows three different areas that

may be of concern when creating a system model: (a) the physical system being studied,

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(b) a system model, and (c) a set o f model types. The model in (b) is a representation of

the system shown in (a). It is composed o f a set of component model instances. The

intent o f the system model is to describe relevant behavior o f the physical system. There

is a direct relationship between the model instances and the component or property o f the

physical system which they represent.

mm• •

Spring

Ground

Dashpot

Rigid
Connector

Mass

(a) Physical System (b) System Model (c) Model Types

Figure 2. Three Areas Related to Modeling.

In a similar relationship, the model types in (c) are general descriptions o f the

component models specified in (b). The intent o f a model type is to describe the behavior

o f its corresponding modeling instance. A single model type description is related to

multiple model instances. For example, there are two spring models, but only one spring

type. Each instance o f the spring model maintains some data that is unique (e.g. the

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

stiffness value). The spring type maintains data that is common among all spring

instances (e.g. the fact that there are only two connection points).

2.1.1 Design Considerations for a Modeling Environment

It is desirable for a modeling environment to support User-Defined Model Types

(UDMTs) for storage in a model library. UDMTs provide a means to customize the

modeling environment with the models that are most useful. Model generation time is

decreased because, instead of starting from scratch each time a new system is to be

modeled, an engineer can browse a library of existing UDMTs for ones that most closely

meet current needs. UDMTs also serve as a repository o f modeling knowledge; efforts

and knowledge used to solve previous problems become resources available for solving

future problems.

There are many difficult issues related to using and developing UDMTs. A good

definition o f a UDMT allows for sufficient detail to capture desired behavior while being

flexible enough to allow for future modification, thus providing specialization for a

particular purpose. The amount o f flexibility in modifying properties a user should have

when working with an instance o f a UDMT is not universally agreed upon. Current

implementations tend to fall at one of two ends o f a spectrum. At one end, allowed

modifications are quite limited. In many environments the only allowed modification is

the setting of parameter values; meanwhile the underlying equations remain invariant.

This scheme helps to ensure that a UDMT instance won't be modified in ways

inconsistent with its intended use. However, it severely restricts the useful forms that it

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

can take. Since a model is an approximation o f reality, there are generally many possible

forms any given model may take. It therefore becomes necessary to store multiple,

closely-related model forms of any given component model.

At the other end o f the spectrum, modifications o f the properties o f a UDMT

instance are relatively unlimited. This philosophy gives more flexibility when using a

UDMT, usually at considerable effort in defining a new instance. In addition, it may

mean that models can be changed in ways that are inconsistent with original intentions.

Figure 3 illustrates how this philosophy can lead to an improperly modified model. A

default bond graph, I-Port C-Type is shown in part (a). Since the general form of a bond

graph C-Type allows multiple equation forms, these equations should be accessible to the

user. However, the lack of constraints on how these equations can be modified can lead

to an improper modification, as shown in Figure 3(b) where the function relationship e =

f«C is more appropriate for a purely energy dissipating component, like a bond graph R-

Type (Kamopp, et. al., 1990).

e
f

q = f f dt
c = q/C

q = J f dt
e = f • C

(a) Default (b) Improperly
Modified

Figure 3. Improperly Modified Bond Graph, t-Port, C-Type.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Another difficult issue in working with UDMTs arises when one wants to create a

new UDMT. This task generally involves learning a specialized modeling language or

set o f function calls. Also, it is often necessary to start with a "blank slate" every time a

new UDMT is needed, even if the new model type is only slightly different from an

existing one.

A third issue involves the classification o f UDMTs. When a large number of

UDMTs have been defined, a clear and convenient ordering and a method for finding a

model with desirable characteristics are imperative. Most commonly, model

classification tools are limited to grouping model types according to model purpose or

functionality. While this method can be effective, it has two weaknesses. The first

weakness is that the location of a particular model type is a somewhat subjective

decision. Two people may desire to place a given model in two different groups. The

second weakness is that the method relies on models being assigned to "correct" groups.

If a model is placed in an improper location, it could be hard to find, or worse, give an

incorrect impression of the model's purpose.

2.1.2 Previous Work

The concept o f using UDMTs to extend a modeling environment has been

exploited previously by others, although the ideas have not been expressed in the fashion

presented here. This section presents the conceptual ideas that have been explored by

others in relation to this work. A more specific description o f implementation details of

some other groups is given in section 3.1.1.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Previous implementations o f UDMTs specify a set o f model properties. Instances

based on a UDMT initially have the same attributes as specified by the UDMT definition.

The type and manner o f modifications that can be made to model instances are fixed; i.e.,

they are part of the UDMT definition. For example, in the Simulink modeling

environment (MathWorks, 1999) model instances created from UDMT definitions only

allow for modification o f model parameter values. There is no way to extend the

environment's ability to modify equations or to specify the way the parameters values are

set. In the modeling environment 20Sim (Controllab Products, 1999) additional

properties o f a model instance can be modified (e.g., the model's equations), but which

properties can and cannot be modified is not controlled by the creator of the UDMT, but

is a function o f the modeling environment.

Using a UDMT definition to prescribe the manner in which properties o f a model

can be modified has been suggested.. However, current thinking is limited. Thus far the

only application has been to specify valid ranges o f parameter and variable values, as in

the SEDOPS+ modeling language definition (Bruenese, 1996). Extension to other model

properties has not been previously explored.

Vries et. al. (1994, 1993) have explored methods for structuring of a set o f model

types. In their work they divide the properties o f a UDMT into two categories, the type

specification or type interface and the implementation. Properties that are classified in

the type category are inherited when a new UDMT is derived from an existing one.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Implementation properties are not inherited. This strategy allows for an ordering of a set

o f UDMTs in a "class" or type structure. A similar approach is taken in the Modelica

modeling language (Modelica, 1999; Mattson, et. al., 1998). However, this manner of

inheriting properties is limited in that once a set o f properties has been specified as part of

the type interface, then all derived models have the same type interface. In Simulink

there is no notion o f structuring a set of models. Each UDMT is a unique entity with no

relationship to any other UDMT.

2.1.3 Approach

To address the issues raised above, a new environment for describing User-

Defined Model Types o f mechatronic components was designed. This design improves

the ways in which UDMTs are defined, created, and classified. This goal is

accomplished with a new modeling structure, the Multiport Template. A Multiport

Template is a combination o f three items:

1) a modeling structure called a General Multiport,

2) constraints that specify the range o f properties that the UDMT can have and that

bound the values the properties can assume, and

3) default property values.

A Multiport Template (hereafter referred to as a Template) is used as the basis for

creating instances o f component models, prescribes the way an instance's properties can

modified, serves as a basis for deriving new Templates, and provides a mechanism for

classifying Types based on functionality.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Section 2.2 describes the properties o f a General Multiport. The Template design

is given in Section 2.3. The usefulness and effectiveness o f the design is demonstrated

by two examples in Section 2.4.

2.2 Definition of a General Multiport

The definition of a fundamental modeling construct developed as part of this

research is presented in this section. The data structure, called a General Multiport,

establishes the range of models that can be defined by any instance o f a Template. While

this definition provides a foundation for building models that represent many types of

dynamic systems, it is not meant to be all-inclusive. Also, many o f these ideas have been

studied and expressed in various formats by others. For example, power-based modeling

ideas in the form of bond graphs were initially introduced by Paynter (1961) and later

further explored and defined others (Breedveld, 1985; Cellier, 1991, Kamopp, et. al.

1991). Other general purpose, power-based modeling constructs have been defined that

attempt to further expand the functionality o f these tools (Rosenberg, et. al, 1996; Otter

and Cellier, 1997; Elmqvist, et. al., 1998). Concepts related to hierarchical model

representations have also been explored (Cellier, 1992b; Hales, 1995). However, the

design presented here has additional features not previously considered. For example, no

references have been found to indicate work done on specifying properties of a modeling

structure that would ensure correct UDMT reuse and to allow for model classification

schemes based on functionality.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

It is convenient to divide the definition o f the General Multiport into four

categories. The Topological Properties are described in Section 2.2.1. Parametric

properties are discussed in Section 2.2.2. Functional properties are presented in

Section2.2.3. Display properties are described in Section 2.2.4.

2.2.1 Topological Properties

The fundamental modeling entity in this system is referred to as a Component.

Figure 4 shows a representation o f a General Multiport Component, illustrating many o f

its properties that will be elaborated on in this and subsequent subsections. A Component

can represent a physical object, like a shock absorber, or an effect, like mechanical

friction. Components are classified as either open, meaning that they can be connected to

other Components, or closed, meaning that they cannot be connected to other

Components. A closed Component is given the special designator o f System.

Ports are directly associated with Components. A Port indicates a site for

connection between Components. Ports can be physically meaningful, like a shaft on a

flywheel, or functional, like an input signal to a transfer function. Open Components

have one or more Ports; closed Components have no Ports. A pair o f Ports is associated

by a Connector, thus connecting the two associated Components.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Signal
Ports Component

Power
Ports

Parameters:
e t, f i

Figure 4. A General Multiport.

2.2.2 Parametric Properties

It is often useful to define a set o f Parameters for modeling convenience.

Parameters may point to physically meaningful attributes, such as material properties or

geometric dimensions. It is also useful to define common symbolic constants, such n. In

this definition a Parameter's value does not change during the course o f a simulation,

although it may be changed between simulation runs. Although Parameters are

ultimately used in Equations, that relationship is not important at this level. This

distinction is meaningful because System Components, which have no Equations, may

have a set o f Parameters.

A Parameter can be associated with a Multiport in several different ways,

depending on its intended use. A Parameter associated with a System is considered

"global" and is accessible to any Component that is contained in the System. The density

o f hydraulic fluid is an example o f a System Parameter. On occasion it is desirable to

have a Parameter that is only accessible to a subset of a model's Components. In this

case, a Parameter should be associated with a Subsystem Component. When a Parameter

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

should only be accessible to a single Component, then the Parameter should be associated

with a Core Component.

2.2.3 Functional Properties

There are several aspects to the functional properties o f a General Multiport. Port

Variables, Internal Variables, and Equations are described in this section.

2.2.3.1 Port Variables

The Ports on a Component also serve a functional purpose. Ports have one or

more Port Variables directly associated with them. Port Variables are dynamic; that is,

they are functions o f time.

Ports have one of two directions: In (towards the Component) or Out (away from

the Component). The interpretation o f the Port direction depends on the Port Type. A

Port's Type classification is based on its Port Variables. A single Component can have

multiple Ports o f any Port Type associated with it. Currently, two Port Types have been

defined, which will be discussed below.

A Signal Port Type has exactly one Port Variable. If the Port is directed In, then

the Variable is a functional input; otherwise, it is a functional output. For example, a

Block Diagram Sum Block has one or more In Ports and exactly one Out Port.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Power Port Type has two Port Variables associated with it. The product o f a

Power Port's Variables represents a power flow. For example, a shaft Port's Variables are

torque and angular velocity. The direction o f a Power Port shows the positive direction

of energy transfer.

One o f a Power Port's Variables is used as a functional input and the other as a

functional output. Which Port Variable is used as the input and which Variable is used as

the output at a Power Port depends on the Port's Causality. Causality may be "fixed" or it

may be dependent on the system assembly. For example, a model of an electric battery

might have one Port with fixed Causality specifying the voltage is always a functional

output. On the other hand, the Power Port o f a model o f an electrical resistor could have

either voltage or current as a functional output, depending on how it is connected in a

system model.

Additional Port Types and properties have previously been defined and studied

and will not be elaborated upon here (Breunese, 1996; van Dijk, 1994). However, this

design does not preclude future definition o f other Port Types and properties.

For two Ports to be connected, they must at least have the same Type and

complementary directions; i.e., one Port must be In and the other Out. A Port connection

indicates that the corresponding Port Variables are directly coupled. The functional role

of the Port Variables must also be complementary; i.e., Variables used as functional

inputs on one Port must be functional outputs of the other Port.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2.3.2 Internal Variables

Internal Variables are Variables that are defined locally to a Component. As the

name implies, the values associated with Internal Variables are not accessible to other

Components, and their values can change over time. They are primarily used for

convenience. For example, an intermediate computation may be assigned to an Internal

Variable.

2.2.3.3 Equations

Equations are mathematical expressions consisting of Constants, Parameters, Port

Variables and Internal Variables. Equations may be expressed in traditional

mathematical form (e.g., algebraic and differential) or expressed as logic statements and

procedures (e.g., if-then statements and loops).

Components come in two varieties, Subsystem and Core, as illustrated in Figure 5.

Core Components are open, are directly associated with Equations, and are structurally

irreducible. Subsystem Components are open and have a connected assembly of other

Components, supporting hierarchical model descriptions. Subsystem Components have

implied equations, derivable from their contained Core Components. Whether a

Component is created as a Subsystem or a Core depends on modeling judgement. For

example, a model o f a DC motor could be represented either by an assembly o f

Components such as a resistor, inductor, inertia, etc., or by a stack o f Equations.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Core Subsystem

Equations «

Figure 5. Two Types of Multiport Components.

An important characteristic of mathematical equations in this system is that they

are in symbolic form. This feature is important for supporting reusable models (Cellier

and Elmqvist, 1993). One reason this statement is true is that, using the connection

scheme defined above, symbolic equations are required to accommodate Components

that have system-dependent causality. That is, an equation may need to be inverted so

that the functional output variable is explicitly calculated. For other connection schemes,

it is possible to avoid equation reformulation, as was demonstrated by Byam (1999).

The data structure defined here makes it possible to specify an equation as having

a fixed input/output form. An additional restriction on equations is that the output Port

Variables must be computable for any legal causal configuration.

2.2.4 Display Properties

A Multiport's display properties include Icon, Name, and Keywords. These

properties serve as mnemonics to quickly and conveniently locate, refer to, and classify

models. It is important that the ideas implied by a model's display properties are

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

consistent with its actual definition. For example, a model named "Spring" with an Icon

that looks like a spring should have other properties (Ports, Equations, Variables,...) that

are consistently defined. Or, if the keyword "linear" is associated with a model, then the

Equations should indeed be linear. Consistency between the Display and other model

properties is important because the Display is often heavily relied upon when one is

trying to understand or to explain the purpose of a model.

A good implementation that relies on display properties can be useful when

browsing or searching the contents o f a large library. For example, if models with similar

purposes are grouped according to Keywords, then finding a model for a particular

purpose at hand can be greatly simplified (Bruenese et. al., 1998, OLMECO, 1991).

Finally, the Icon serves a practical role in a Graphical User Interface (GUI) for

identifying, manipulating, and editing a model's properties.

2.3 Templates

Now that a useful modeling structure has been defined, how this information is

used when working with User-Defined Model Types will be discussed. There are two

general ways to work with a UDMT, depending on the task at hand: I) creating instances

and using them to build a model, and 2) defining and classifying new UDMTs. This

section will discuss these two activities and describe the role o f Templates.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.3.1 Working With Instances and Templates

Figure 6 shows the relationship between an Instance based on a Template, a

Template, and a User. A model is composed o f an assembly o f Instances. An Instance is

a unique modeling object that is a realization o f a configuration of some o f the properties

o f the General Multiport. An Instance is created for a specific modeling purpose, such as

for modeling a specific pump. Initially the attributes o f the Instance are solely derived

from the Template. User input is then used to specialize the properties o f the Instance,

such as specifying the pump displacement constant. Multiple Instances can be created

from a single Template and each Instance maintains its own attribute data.

Type
Interface

Tune

View

Modify
User

New
Template

Denve Existing
Template

Figure 6. Working with an Instance and Template.

Interactions with an instance can be classified into two categories, viewing and

modifying. It is significant that there are some properties o f an Instance that can be

examined by the user, but not modified. Also there are limits on how some properties

can be modified. The mechanism for moderating modification of property values is the

Instance Interface. All interactions between a User and an Instance must occur through

this interface.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The key element in this arrangement is the Template. A Template is used to

create Instances and specify how Instances can be modified. A Template accomplishes

the goal by coordinating three sets o f data.

(1) The General M ultiport Definition. All Templates are based on this definition, which

bounds the range o f models that can be defined using a Template.

(2) Constraints. A Template lists a set of Constraints that are used to specify which

properties o f the General Multiport can be assumed by an Instance and limits the

values that properties may assume. Stated another way, Constraints are used to

further bound the properties that an Instance may assume. If a Template did not

contain any Constraints, then it would be possible to define an Instance using any

configuration defined by the General Multiport.

(3) Default Property Values. A Template defines a default configuration of model

properties for an Instance.

The unique feature in this design is the use of Constraints to specify a UDMTs

properties. This method is different from other implementations of UDMTs, which only

specify a set o f properties. Constraint data is used to modify the behavior o f the Interface

Editor. When editing the properties o f an Instance, the Editor is "tuned" according to the

specified Constraints listed in the Template. In this way it becomes possible to create

User-Defined Model Types that are edited correctly by all users o f the model.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A brief example will help to illustrate these ideas. Consider again the I-Port C-

Component shown in Figure 3 and the three aspects o f a Template discussed above that

would be needed to define this Model Type.

General M ultiport Definition

The constructs o f the General Multiport Definition described in Section 2.2 are

sufficient to support the definition of a 1-Port C-Component.

Constraints

The following statements prescribe the way instances of the C-Component can be

modified:

• The C-Component must have exactly one Power Port. That is, no other Port Types

are allowed, the default Port cannot be deleted, and no other Power Ports can be

added.

• The state Equation (first Equation) is fixed. That is, the user cannot modify it.

• The constitutive Equation (second Equation) has the fixed form e-tf^q p). That is, it

can only be composed of Variables e and q and Parameters p, with e as an output.

D efault Property Values

The following information specifies a default instance o f the C-Component.

• A single In Power Port.

• First Equation: q = I f dt

• Second Equation: e = q/C.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Now consider how the Template data is used. An Instance o f the model is created

using the default property values o f the General Multiport. When a user attempts to

modify the properties o f the model, the Instance Editor interprets the Constraints and

enforces them. For example, the Equation editor only allows a user to modify the second

Equation. In addition, the editor checks if the form o f the Equation defined by the user

matches the Constraint.

2.3.2 Working with Templates

Figure 7 shows the relationship between an existing Template, a new Template,

and a User. A new Template is created by derivation from an existing Template. The

new Template inherits the Constraints and any default properties that have fixed

Constraints from the existing Template. In this way, a strict parent-child relationship is

established. Any previously defined Template can be used as a parent. One special

Template, the General Multiport Template, has no Constraints or default values. An

instance of the General Multiport Template can be manipulated by a user to have any

configuration that is supported by the General Multiport definition. The General

Multiport Template is used as a "seed" for deriving a set o f (child) Templates.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Type
Interface

Tune

View
User

New
Template

Derive
K ------

Existing
Template

Figure 7. Working With Templates.

The input from the User in creating a new Template is limited to two types of

actions. First, a User defines additional Constraints to be applied to an Existing

Template. Second, default property values can be added and changed, subject to any

previously defined constraints. The User works directly with the new Template through a

Type Interface. This interface is tuned to enforce the rule that Constraints can only be

added to an existing Template and assists the user in adding new Constraints to a new

Template. This structure simplifies the process o f creating a new Template, especially if

a good Type Interface has been designed to present the User with the available choices of

Constraints.

2.3.3 Implications of Inheriting Constraints

Recall that when a Template is created, it is derived from a parent. Derivation in

this context means that the child Template inherits the parent's Constraints. During the

creation process additional Constraints are specified, but Constraints specified by the

parent can not be relaxed.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Further insight into the implications o f this type o f inheritance can be found by

considering the influence it has on Template instances. The range o f possible instances

of a Template model is limited by its Constraints. For the General Multiport, the range of

possible instances is limited only by its definition, i.e., there are no Constraints associated

with the General Multiport Template. The range of possible instances o f the General

Multiport Template is depicted by the outer most oval in Figure 8(a).

When a new Template is derived from a parent and additional constraints are

specified, as shown in Figure 8(b), then the range o f possible instances decreases. More

specifically, the range o f possible instances is a subset o f the range o f possible instances

o f the parent. This relationship is shown in Figure 8(a). The range o f instances created

from Template 1 is smaller than the range of instances that can be created by the General

Multiport Template. If Template I is in turn used as a parent for Template 2, then the

range of possible instances that can be defined based on Template 2 is a subset o f those

that could be created using Template 1. Finally, Template 3 is also derived from the

General Multiport Template, showing that multiple Templates can be derived from a

single parent.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

General
Multiport
Template

Template
Template 1

Template 2

Add

(a) Possible Configurations of
Instances

Constraints

T2

T3

General
Multiport
Template

(b) Derivation Tree

Figure 8. Parent-Child Structure o f Templates.

2.3.4 Template Libraries

Many commercially available modeling environments currently provide a large

number of pre-defined model types for specialized purposes. Models are often organized

into groups according to similar purpose or power domain. Models are listed in the

library by a name and/or an icon. Easy5 (Boeing, 1998) has a typical library architecture.

Several pre-defined groups or models are defined. Each group is referred to as a library.

Some of the libraries provided by Easy5 are the "Valve and Actuator Design Library", the

"Electric Drive Library", and the "Aerospace Vehicle Library". When a new UDMT is

created in this environment, it can be placed in any pre-existing library or in a new library

specified by the user.

If a large number o f UDMTs have been created and stored in a library, then it can

be cumbersome to browse through a large, flat list, searching for a model type that is

useful for a specific application. This observation is especially true if the set o f models is

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

being used by someone other than the originator. Another limitation to this scheme is

that a given instance o f a model only resides in one library at a time. It may be difficult

to locate a particular model if it cannot possibly be placed in multiple libraries, especially

if the purpose and intended use o f the UDMT must be deciphered from only the name

and/or icon. Some o f these limitation were addressed by Bruenese, et. al (1998), who

define a classification scheme that allows for models to have multiple classifications.

However, another issue that is not addressed involves the fact that the classification

system is based on subjective reasoning; how a model is classified by one person may not

match another person's way o f thinking. Also, if the number o f models with a given

classification becomes large, the original problem o f sorting through a large, flat list of

models remains.

One benefit o f the Template structure is that at least three methods for organizing

a list o f Templates are possible: by keyword, by constraint, and by generation history.

These methods help to overcome the problems listed above. A description of these

methods is given below.

2.3.4.1 Organization By Keyword

Recall that part o f a Template definition includes a set o f keywords. By

thoughtfully associating a set of keywords with the Templates in a library, a simple yet

powerful mechanism can be employed for searching through a list o f Templates. To

begin a search, one or more keywords from a list o f known keywords are specified.

Next, each Template in the library is examined and its keywords are compared to the

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

keywords in the search list. The result o f the search would be to produce a list of all the

Templates that have the same keywords that are in the search list. The matching criteria

can be simple, (e.g., any keyword matches any target list entry) or more complex (e.g.,

based on a logical construction of keywords).

This searching scheme allows a set of Templates to be classified in multiple ways,

not just placed in a single group. It also means that it is possible to find a Template in a

Library in multiple ways. This result is practically important, since different people

organize their thinking in different ways.

1.3.4.2 Organization By Constraint

One limitation to using keywords as a searching device is that there is no control

over which keywords get associated with a Template. This situation has the potential to

be misleading and frustrating, with searches leading to inappropriate Templates. The

idea o f using keywords as a filter can then be extended to using the Constraints that are

associated with the Template. For Constraints that are sufficiently general, it would be

possible to search a library for Templates that have that Constraint. For example, a

library could be searched for Templates that have the Constraint that no Power Ports are

allowed, or for Templates that are constrained to have only Algebraic Equations.

This scheme has many o f the same benefits discussed with the keyword method.

An additional advantage to this idea is that the Constraints associated with a Template

directly influence its functionality. This result means that it isn't possible to have a

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

search that produces a poorly matched Template. That is, the Templates found as a result

of a Constraint search are guaranteed to exhibit the behavior specified by the Constraints.

Another advantage is that classifying models based on what Constraints are applied to

them is a natural way to organize one's thinking about a set of models.

One weakness o f this scheme is that the list of Constraints on which to search is

limited to the types o f Constraints known to the system. Also, the Constraints are strictly

limited to functionality; abstract classifications that are possible using Keywords are not

possible. For these reasons, it is useful to support searching both by keywords and by

Constraints.

2.3.4.3 Organization By Generation History

A third classification scheme takes advantage o f the Parent-Child relationship

between two Templates (see Figure 7). This relationship sets up a natural ordering of

Templates in a tree structure instead of in a flat list. Recall that a child Template is a

specialization o f a parent Template. Browsing is aided by this fact. For example, if a

candidate model located in a library is too general, then a child Template can be sought

that specializes the behavior in an appropriate way. Conversely, if a model found in the

library is too restrictive, the parent model can be considered.

An additional benefit to this classification arises from the fact that the

classification structure can be patterned after the thinking of the person building it. This

is possible because the classification structure is not unique. For example, consider the

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

task of initializing an environment with a set o f electrical components that only have

Power Ports. One way to go about this task is to first define a Parent Template that adds

the single constraint that all the power ports must be electrical. The next step might be to

derive a new Template from this Parent Template and add a single Constraint specifying

that there are no Signal Ports. This path is illustrated in Figure 9(a). An equally valid

option for obtaining the same results would be first to define a Template with no Signal

Ports and then to use this Template to derive one that adds the Constraint that all Ports

are electrical.

Electrical.
No Signals

General
Multiport

General
Multiport

Electrical No Signals

No Signals.
Electrical

(a) P ith I (a) Path 2

Figure 9. Two Paths for Generating a Template.

2.4 Illustrative Examples

Two examples will help to illustrate how the design ideas discussed in this

chapter are used when working with Templates. The first example demonstrates how a

Template is used to define and work with an instance. The second example shows how

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

new Templates are created based on existing Templates and the natural classification that

arises.

2.4.1 A Template Definition

A representation o f the information associated with a Template o f a Permanent-

Magnet DC Motor is shown in Figure 10. The information is divided into the four

categories that were used to describe a General Multiport in Section 2.2. On the left side,

default property values are given. Constraints are listed on the right hand side and

correlate with the properties listed directly to the left.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Topological Constraints

Component Type
Core

Ports
Electrical Power In
Rotational Power Out

Fixed.
Fixed Port Number.
Fixed domain, direction.
Fixed domain, direction.

Functional Constraints
Port Variables

Electrical: v, / Prefer v as input.
Rotational: r, co Prefer ras input.

Equations Allow ODE and Algebraic.
V = VL + Vr + v m Fixed.
r = Tm - T j - T r Fixed.

3s II e Fixed.
rm = kmi Fixed.

r di
v l = L -

dt
VL =&(7--P) dt

vR = R j V r = 0- P)

II tr = 0-, (<y, p)
T r = RmCO T r = <t>% (a k p)

Parametric Constraints
Parameters km̂ {kmi. km2*..., kmn}

p = {fcm Re, L, J. R„] Re, nun — Re — Re. max
0 <L< Lmax
J mm — -I — Jmax.
0 <Rm< Rm.max

Display Constraints
Icon Fixed.

Kev Words '
Two Port, Transducer.... Fixed.

Name
PMDC Motor Fixed.

Figure 10. A Template of a PMDC Motor.

Note that the topological property o f this Template that specifies the default

Component Type is "Core". Recall that this attribute means that the Component is

structurally irreducible and Equations are directly associated with the Component. A

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Constraint on this property specifies that the "Core" designation is Fixed. This Constraint

indicates that a user can not change an instance's Component Type from Core to

Subsystem.

The default data also specifies that there are initially two Ports associated with

this Component: an Electrical Power In and a Rotational Power Out. The Constraint,

"Fixed Port Number" indicates that the Port number can not change; i.e., no Ports can be

added or deleted. The power domain and power direction of each Port are also fixed.

The default Equations listed suggest that this model o f a motor nominally

considers the effects o f the winding resistance and inductance, back emf, and the inertia

and friction in the motor. Although all the effects are linear by default, some non-linear

equations are possible.

There are two types o f Constraints on Equations shown in the figure. Some

Equations are "Fixed", meaning the Equation can not be changed; others have a fixed

form, meaning the equation can only have the specified variables and parameters and

must have the specified variable as an output.

There are two types o f Constraints on Parameters shown. The motor constant km

has a list of allowable values. This Constraint is consistent with the fact that motors are

often available with discrete values o f motor constants. The other Parameters have an

allowable range o f values in the format shown.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Constraints are intended to make sure that the basic model effects are

captured and that the form o f the equations is correct, while still providing flexibility for

multiple instances. This flexibility means that a broader range o f model variations is

possible than if only the parameter values could be changed. For example, the

mechanical resistance equation model could be changed to model a different type of

friction model, such as Coulomb.

Recall that Constraints specified in the Template are enforced by the Instance

interface. For example, limits on parameter values are enforced whenever a user attempts

to change a parameter value. If the entered value is not within the specified range, the

user is immediately notified and required to fix the error before continuing. Another way

that the Instance Editor can enforce Constraints is by never presenting the user with an

option to perform a task that would violate a Constraint. For example, since the number

o f Ports is fixed, the user is never given the option to ’’add” or "delete" a Port. Using the

Constraint information, an instance then "behaves" according to its design.

2.4.2 Creating and Classifying UDMT Templates

When creating a new Template, the starting point is either the General Multiport

Template or another existing Template. Consider the process o f defining new Templates

as illustrated in Figure 11.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Add
Constraints

__ Cl

C2

C3T2

Tl

T3

y = p,x, - pjx.

General
Multiport
Template

Figure 11. Deriving New Templates.

A new Type, T l, is created, based on the General Multiport Template. To

accomplish this objective, Constraints C 1 are added. The Constraints are as follows: no

Power Ports, 1 to n In Signal Ports, 1 to m Out Signal Ports, and Algebraic Equations.

These Constraints limit the possible models that may be defined using T l as a Template,

but still allow for a broad class o f models.

A new Type, T2, is created, derived from the existing Type T l. The additional

Constraints o f exactly one Signal Out and exactly two Signal In Ports mean that models

based on T2 have less flexibility than models based on T l, but they are more efficient for

certain tasks.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Similarly, a new Type T3 is created based on T2. The additional Constraint in

this case is that the Equations are Linear. This Constraint effectively creates a Weighted

Sum Block, with the parameters p \ and pz accessible for modification by the user.

Notice that Types T2 and T3 each could have been created directly from the

General Multiport Template. However, this path would require more effort and input

from the user than starting with an appropriate parent. It also should be emphasized that

defining multiple Templates does not increase the range of models that can be defined.

That range is bound by the General Multiport definition. In fact, if the only Template

that was available the General Multiport Template, no generality would be lost; i.e., a

user could create any model supported by the definition. However, each time an instance

was created, a user would need to make a large number of modeling decisions that would

eventually result in the desired model description. Instead, using models that have been

appropriately constrained eases the modeling burden. Applying Constraints to a

Template is therefore equivalent to a user making modeling decisions. By choosing a

specific type, some modeling decisions are already being made.

The example above also demonstrates how the derivation of new Templates from

existing Templates, by applying additional Constraints, leads to a natural classification o f

a set o f Templates. Each Template is a special case or subset of its parent.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3
IMPLEMENTATION OF A MODELING ENVIRONMENT

3.1 Implementation Background

In this chapter an implementation o f a modeling environment for mechatronic

systems is described. The environment was specifically targeted to support the General

Multiport modeling construct, the use and creation o f Templates, and use o f the library

tools described in CHAPTER 2. A brief synopsis o f the goals o f this design is presented

here.

• The Environment will have a simple-to-use, graphically driven interface that is

congruent with common software that is currently available. Although this goal is not

a specific research issue, it is nevertheless a significant objective for any practical

application (Mackulak, et. al., 1994).

• The Environment tools, semantics, organization, and operation will be congruent with

standard modeling paradigms.

• The fundamental modeling construct will be the General Multiport.

• In this demonstration environment explicit, ordinary differential equations will be

supported.

• Every modeling component defined in the system will be a User-Defined Model

Type, which will be defined using Template concepts.

• The environment will use Template data to provide tools that ensure that model

instances are used as intended.

• The creation o f a new Template will be as simple as possible, only requiring a user to

fill out a set o f simple forms.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• New Templates will be derivable from existing Templates. Constraints are

automatically inherited.

• A classification system is supported that supports library browsing and searching

tools using keywords, constraints and generation history.

3.1.1 Previous Work

There are several existing software implementations that are used for mechatronic

systems modeling that also support the definition of UDMTs. In this section, the relevant

features o f two modeling tools will be discussed. Simulink (MathWorks, 1999) is

representative o f software that is based on fixed input/out information flow. 20Sim

(Controllab Products, 1999) is representative o f software based on both information and

power flow.

3.1.1.1 Simulink

The Simulink environment supports models with fixed input/output information

flows. There is no support for power flows. UDMTs are implemented using "S-

Functions". An S-Function is a text file written in the style o f a program subroutine and

uses one o f three forms: syntax specific to Simulink, FORTRAN, or C. The name of the

text file is the name of the UDMT. The syntax of an S-Function can be somewhat

complex and requires knowledge o f a specialized format and Simul ink-defined functions.

There is no automated software support for creating and editing S-Functions.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

An S-Function definition provides for specification of a fixed number of Signal

Ports. Each Port has a specific "width", which is the number o f variables associated with

it. Ports can either have a fixed or variably sized width. The actual number o f variables

associated with a Port with a variable width is specified when the S-Function is

connected in a system.

A fixed input/output relationship among the port variables is specified in an S-

Function using constructs that are common in FORTRAN and C and functions that have

been defined by the Simulink environment. Once this relationship has been defined then

1) the causal form o f the equation cannot be altered and 2) all instances of the S-Function

must use that definition; i.e., an instance's equations cannot be modified. However, each

instance can specify its own set of parameter values.

Simulink has some built in support for organizing a set o f S-Functions. First, a

set of "libraries" can be created. Each library can contain a set o f S-Functions. A

particular S-Function is found by manually searching the contents of each library.

Alternatively, the location of a particular S-Function can be found using the S-Function's

name and an automated search tool; i.e., if the S-Function name is known, then its model

can be found.

3.1.1.2 20Sim

The software package 20Sim supports models composed o f both information and

power flows. All models that are defined by the system are based on the modeling

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

language SIDOPS+ (Bruenese and Broenink, 1997). The result is that nearly every

component model in the system can be considered a UDMT. Comprehensive knowledge

o f SIDOPS+ is not required to create many types o f component models, but at least some

knowledge is required for all types o f component models. The software provides some

automated help in the creating o f new UDMTs, mainly in the form o f syntax checking.

SIDOPS+ specifications provide for either a fixed number or variable number of

signal and power ports. Each port has a specific "dimension", indicating the size o f a

matrix that stores the port's variables.

When specifying the properties o f a SIDOPS+ model, a default relationship

among port variables, or a set o f equations, can be supplied. 20Sim supports two features

with respect to a component's equations that are of particular importance. First, a

component's equations are treated symbolically. The result o f this design is that multiple

causal forms can automatically be derived. As was previously mentioned, this point is

key for supporting the reuse o f physical system models. Second, each instance of

SIDOPS+ model maintains its own set o f equations. The result o f this design is that a

given SIDOPS+ model can be used with greater flexibility. However, an unfortunate

consequence also results. A SIDOPS+ model has limited ability to ensure that its

equations are modified in a way consistent with original intentions. As an example, it is

possible in the 20Sim environment to specify the equations o f a bond graph, I-port C-

Component to behave as an R-Component, as discussed in Section 2.1.1.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Library support in the current version o f 20Sim is limited to placing SIDOPS+

models in various directories of the operating system. However, a design for more

extensive library tools has been described (Bruenese, 1997).

3.1.2 Contents of Chapter

Based on the review o f currently available tools and the desired goals of this

research, an implementation o f an environment for modeling mechatronic systems was

created. The modeling environment developed is called Model Builder (MB). General

features of the MB and an example o f working with a modeling component are described

in Section 3.2. Using MB to define a new Template, both by starting from scratch and by

using an existing Template, is illustrated in Section 3.3. Section 3.4 presents tools for

browsing the contents o f a library.

3.2 Creating and Editing Component Models

3.2.1 General Features

As can be seen in Figure 12, the MB environment is graphically driven and uses a

common Windows interface. A list o f available Templates appears on the left-hand side

o f the screen in the list labeled "Components". This list was specifically not labeled

"Templates" to avoid forcing the advanced features o f Templates onto users who simply

want to use the environment for creating models based on existing Templates.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Consequently, in the rest o f this chapter, "Component" is often used as a synonym for

"Template". The context o f the discussion will make the actual meaning clear.

The list o f Components initially displays all o f the Templates that are known to

the system in alphabetical order. However, as is indicated in the figure, there are more

sophisticated tools for browsing the list of Components. These features are described in

Section 3.4.

Upon starting MB a new model is created. The top-level contents of a model are

displayed in a Model Window. Multiple model files can be opened concurrently in the

environment, with each model displayed in its own Model Window. The contents of

Subsystem Components can also be displayed concurrently. To view the contents of a

Subsystem Component, the right-mouse button is clicked on its icon. This action

produces a "context menu" with commands that are applicable to the Subsystem

Component. One o f the context menu commands is "View Contents". If the Subsystem

has not already been opened, then selecting this command causes a new Model Window

to be created, displaying its contents. If the Subsystem has been previously opened, then

selecting this command causes the Subsystem's Model Window to be brought to the top

o f the windows stack. There is no limit to the depth o f imbedded subsystems in this

environment.

In Figure 12, the top-level contents o f a model called Model 1 is shown on the top

right-hand side. There is a single Subsystem Component in the top level o f Model 1,

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

called Subsystem_l. The contents o f Subsystem_l, which is currently empty, are

displayed in a Model Window on the bottom right-hand side.

Mil M n d e M
File £ d it View Window jle lp

h o H
LlMH HHH fflU S 3
Components:

^eady

Q Signal
E Sink

Source
5eJ Source of Effort
13 Source of Flow

Subsystem
(2) Sum
.T >.r ’.V ., .\T \-.W .V .W w /.'A W .W .W V ,V A W V /A V A \W W .\V

Keyword Filters:

.. a
S ii 1
I \
irrr, j

i
U pdate

Capacitance \
Core n
Inertia ? 1
Power
Power Conserving i z i

Display By:

Keyword Filters 3

i M u d e 11

Subsystem_1

^
^ „.sl vi

4D M odell :Subsystem _1 u l n l f x l

NUM

Figure 12. Model Builder Environment.

Selecting the desired Component from the Component List and dragging it into an

active Model Window creates an instance o f a Component. After this action an instance

of that Component Template is created and its icon appears in the Model Window. The

Component icon can be positioned freely in the Model Window by dragging it with the

mouse. As is standard with graphically driven tools, many o f the objects that are created

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

in a Model Window can be easily positioned by dragging, including a Component's Ports

and its Label.

3.2.2 An Example

Some additional features o f the general interface and the Template design can be

demonstrated by considering the process of creating an instance and editing a bond graph,

one-port Capacitance Component. The first step is to locate the desired Component from

the Component List. Once the desired Component Template has been found, a new

instance of that Component is created. At this point, an icon representing this component

will appear in the Model Window, as shown in Figure 13. The half arrow on the left is a

Power Port and is labeled "I". The Component label is "Capacitance_l". These labels

can be edited and displayed or hidden at the user's discretion.

Figure 13. An Instance of Bond Graph, One-Port Capacitance Component

The Template that defines the Capacitance Component is used to ensure correct

Component "behavior". For instance, it is not possible to delete the Power Port or to add

another Power Port or a Signal Port. Additional Template data restricts the way in which

Capacitance_1

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the Capacitance Component's Equations are edited. Figure 14 shows the interface for

editing the Capacitance Component's Equations. By default, there are two Equations.

The first equation listed is a state equation. It is an inherent part of the definition o f a

Capacitance Component. Therefore, this equation cannot be edited or deleted. Disabling

the A dd and Delete buttons when the state equation is selected enforces these restrictions.

The second equation in Figure 14 is a linear constitutive law. However, since the

Component is not restricted to this linear form, this equation can be edited, but not

deleted. An additional constraint on editing this equation is that it must be o f the form

el= ^(ql), where ^(ql) is any function o f the variable ql.

L q u a t i o n ;
Definition:

q1 « lntegral(fl.O)
e l * q1/C Add

Edit |

.; w w s w w n w m v .n v w w v .v i

I Delete i

,VAV,\VAV.WWAV,V.-.W.VAV%VAV.%\W.

Description:

State Equation

^W A 'A ’A W IA V A 'A W JW A W A W A ’W .W M 'M W .V A W

Figure 14. Editing the Capacitance Component's Equations.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.3 Creating and Editing Templates

In this section the tools provided for creating a new Template, for deriving a

Template from an existing Template, and for editing an existing Template are discussed.

The ideas are introduced by way o f examples.

3.3.1 Creating a Solenoid Template

One of the design goals for this environment was to simplify the process of

creating Templates. To this end an interface was designed that amounts to filling out a

series o f forms. Each o f these forms will be reviewed for the process o f creating a

Template for a simple model o f a solenoid, represented in Figure 15.

Movable
Slug

'oil

Figure 15. A Solenoid Component.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.3.1.1 Initial Form

The first step in creating any Template is to select an existing Template from the

Component Template list to act as a Parent. The constraints that are specified by the

Parent are inherited. In this first example, a general Core Component is selected as the

Parent. In this case, the only constraint inherited is that the new Template must also be a

Core. When the parent Template has been selected, then the File menu command "Create

Template..." can be selected. At this point the form shown in

Figure 16 is displayed, with the Parent Template name automatically filled in. This form

also provides the opportunity to give the new template a name, which must be unique

when compared to the list o f existing Templates. In the current case, "Solenoid" is

chosen as the name for the new Template.

I (111 l (i <\i j i i i ri* • r 11 I » n i p l i t . ' r i n i l l f i f ' d N n n i » * O

Paren t Template:

jC ore

T em plate Nam e:
Solenoid

Cancel

Figure 16. Solenoid Template: Initial Form.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.3.1.2 General Properties

The general properties o f a Template are specified using the next form. The first

piece o f information is the Component Type that will be created. In the general case, the

choices are Core or Subsystem. In the present case, when the parent Template is a Core

component, there is only one option: Core.

There are two Display Icon Types available: Text or Bitmap. This property refers

to the way in which a display icon for a Template is generated. The default option, and

the simplest, is to specify a text string that will be used to create an icon. The second

option is to supply a bitmap file that has the same base name as the Template that is being

created. In the current case, Bitmap is chosen as the display icon type and a bitmap file

called "Solenoid.BMP" must be externally generated.

The next general Template property is the Default Label. Each Component that

exists in a Model Window must have a unique label. The reason for this restriction is that

the label is used to generate unique System variable names. For Signal Ports, which have

one variable associated with them, System Variables names are automatically generated

by concatenating the Port name with the Component name. For Power Ports, which have

two variables associated with them, System Variables are automatically generated by

concatenating the name of the each Variable with the Port name and the Component

name. This naming strategy makes it possible for two instances o f a component to have

the same port name set.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Every Component instance that is created will automatically have the default label

specified in the Template appended by the instance number. For example, if the default

label is "Solenoid" then first Solenoid created in a Model Window will be called

"Solenoid 1" and the second will be called "Solenoid2" and so forth. After an instance is

created, its label can be changed by the user, subjected to the constraint that the label is

unique among all other Components in the same Model Window.

Finally, a set o f Keywords can be associated with the Template. There are no

restrictions on what can be specified as a keyword, but each one should be thoughtfully

chosen. As will be demonstrated, the keywords associated with a Template can be used

to help search through a set o f Templates. The completed form for the general

properties of the Solenoid Template is shown in Figure 17.

■ ■ H H H K i l

Com ponent Type: Default Label

1.9?.?..........................J 3 Solenoid

D isplay Icon T ype: Keywords:

[Bitmap

Bitmap File:

Core j'* i
Pow er Conseiving
Transducer

|Solenoid.BM P
L i!

< Bock | fcjext > | j C ancel |

Figure 17. Solenoid Template: General Properties.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.3.1.3 Number of Ports

A form for specifying the number o f In Ports and the number of Out Ports that can

be associated with a Component must be completed for each Port Type. Currently, two

types of Ports have been defined, Signal and Power. For this Solenoid Template, it is

specified that there should be no Signal Ports o f either direction. Specifying that the

number o f In Ports and Out Ports as fixed at 0 completes this objective. Figure 18 shows

the completed form for the number o f Signal Ports on the Solenoid.

1 N um ber of Signal Ports'

_ ---------, N um ber 1
iFixedj |-------- [

O V ariable j £ 5 j

^ _ Number. 1
i (5—[3 : C- V enable f ___ 2 $

- T o ta l-- •[

<♦- Fixed |
O Variable j

:t

< B ack Next > | j Cancel j

Figure 18. Solenoid Template: Number of Signal Ports.

The next decision to be made is the number o f Power Ports to be associated with

the Solenoid. In this case two Power Ports are needed, one to represent the flow o f

electrical power to and from the solenoids coils, and another to represent the flow

mechanical power to and from the solenoid's slug.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A design question arises in deciding on the direction o f the Ports. One possibility

is that the direction o f the power flow is unimportant and can be freely specified for any

instance o f the Template. In this case, the form is completed as shown in Figure 19.

Here, the total number o f Ports is fixed, but the In Port and Out Port numbers are variable

from 0-2 and the default numbers are I . This combination o f constraints will ensure that

the total number o f Ports is always two (the sum of the default number o f In and Out

Ports), but the directions o f either port can be set to be In or Out.

1 (l i t 1 11 r r i p i ' n i • n t I i ■ m f 1 1 •

ln-
N um ber of Pow er Ports:

C- Fixed
<5- Variable!

Out---------------

C Fixed
© V ariable

-T otal •

<r- Fixed
C- V enable

Min: M ax Default

jo ia p £ I i SIL wifl____

Min: M ax Default :

EZBTZHlZB I

"<B ack | Ejext > | [Cancel j

Figure 19. Solenoid Template: Number of Power Ports, Option I.

Another possibility is to specify that the In Port and Out Port numbers are fixed at

1. The completed form to accomplish this objective is shown in Figure 20. In this case,

it is assumed that the solenoid is used by applying electrical power to generate

mechanical power, although power can still flow in either direction. Therefore, the

alternative to have a fixed number o f In and Out Power Ports is selected.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

F i i 1 1 : i) r n (11 f i * • n ' T * r n p • I ' i t * • ■ i \ \ (• t 1 . ' i f ' t f ' 1 N u m t a
Num ber of Pow er Potts:

— In-------------------------------- ---------------------------------:

© F ixed
Number. [

i tm |© V enable

—O ut------------------------------

© Fixed
N um ber [

1' i) I
.......................................F

C Variable

—T o ta l --------------------------

© Fixed
}

C Van ab le t
I

< flack £Jext» Cancel

Figure 20. Solenoid Template: Number of Power Ports, Option 2.

3.3.1.4 Default Port Properties

After the number of Ports has been determined, additional Port Properties can be

specified. The next form, shown in Figure 21, is used for this purpose.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I i M I (i r • i [. i r * " ' t ' . . r - , p | , , f ~ i i l l » - w f I ' . f t a

Power Ports:
Coil
Slug

; Edit Properties |

■Constraints on S et----------------------------------
G Ports all have the sam e power domain

G U se Input/Output Rule

[<flack | Ne»t> ~~| j Cancel]

Figure 21. Solenoid Template: Editing Power Port Properties.

There are two Power Port properties that may need to be applied to the all the

Ports as a set. First, all the Power Ports may be required to have the same power domain.

Such is the case when defining a bond graph 0- or 1- junction. However, this is clearly

not the case in the current situation. Second, the variables that are used as input and

outputs may depend on a rule such as on a bond graph 0- junction where only one

"effort" variable is to be used as in input, but it doesn't matter which port specifies the

input effort variable. The solenoid does not require such a rule.

This form also lists default names for each of the default Ports that were specified

on the previous form. The properties of each Port listed are specified by selecting the

Port of interest and pressing the "Edit Properties" button. In the current case, the In Port

represents the electrical coils and the Out Port represents the slug.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 22 shows the form for editing the properties o f the Port representing the

electric coil. The Port Label is used in generating unique variable names. Therefore,

each Port must have a unique Label. A useful Label in the current case is "Coil".

1
Label: Location (Degrees):

I

r
1?“ ____ _________ • I-90 M

Direction: Input/Output Constraint (7: Fixed
ii
I b _________E l | Preferred: Effort In/FlowOut EJ

$
Power Domain: (?| Fixed State Variable: p; •Fixed?

f Electrical E l jp (momentum) __________ M$I
it
js
I c OK j Cancel

!

F igu re 22. Solenoid T em plate: Specifying th e C oil P o rt P roperties.

The initial Location o f the Port is specified here. The value given represents the

degrees from a horizontal line extending from the center o f the Component to the right.

Angles are measured using counter clock-wise as positive. To be congruent with the

schematic shown in Figure 15, the Port will be initially placed at -90 degrees. The

Direction o f the Port is displayed for reference purposes, but it cannot be changed here.

The Power Domain o f the Port is specified on this form. The system understands

five different power domains: General, Mechanical Translation, Mechanical Rotation,

Electrical, and Hydraulic. The power domain value for a port is used for two purposes.

First, the power domain determines the names o f the Variables associated with the Port.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Variable names and descriptions for each o f the Power Domains are listed in Table 1.

Second, the system ensures that only Ports with the same power domain are connected.

Table 1. Port Variable Names.

Power Variables
Domain Names Descriptions

e Effort

General
f Flow
q Displacement
p Momentum
F Force

Mechanical V Velocity
Translation d Distance

Pt Momentum
T Torque

Mechanical w Angular Velocity
Rotation Theta Angular Displacement

h Angular Momentum
V Voltage

Electrical i Current
qe Charge
Lambda Flux Linkage
P Pressure

Hydraulic Q Volumetric Flow Rate
Vh Volume
.e!l. ____ Pressure Momentum

In the current case, the power domain for the coils is chosen to be "Electrical".

Additionally, every instance o f this Port should always be defined as an electrical Port.

Selecting the "Fixed" check box that is next to the Power Domain options specifies this

constraint.

As has just been mentioned, Power Ports have two variables associated with

them: one functional input and one functional output. Which Port Variable is an input

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and which Port Variable is an output is influenced by the Input/ Output Constraint. For

the case o f the coil, the effort variable, or voltage, is specified as preferred as an input.

This constraint has to do with the preferred form of the equations that will be specified

shortly. As a device which stores electrical power, a State Variable is associated with

this port, which represents the flux linkage o f the coils. A corresponding form for the

slug Port is shown in Figure 23.

Label: Location (Degrees):
? ISlug 90

[.
| Direction: Input/Output Constraint Fixed

1 I0 '- a j Preferred: Effort Out/Row i~Jj:
1
I Power Domain: (5? Fixed State Variable: 51 Fixed

1 j Mechanical Translation H jq (displacement) __ El

OK □ i Cancel j

Figure 23. Solenoid Template: Specifying the Slug Port Properties.

3.3.1.5 Equations

The next set o f forms deals with the functional aspects o f the solenoid. In this

example, a set o f parameters and a set of equations are defined. Some planning is needed

to set up a meaningful set of parameters and equations that will be useful and flexible for

a user working with an instance o f the Solenoid Template. The goals in defining the

functional properties of the solenoid are to

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1) provide a default set o f parameters and equations that will describe the solenoid's

behavior in a meaningful way;

2) Allow for the user to modify the default equations; and

3) Assist the user when editing the equations in ways that minimize errors.

Recall that the inductance value o f the coil varies as the slug moves through it.

This effect is due to the differences in the permeability o f air and the slug material. A

general form of the relationship between the coil's inductance vs. the position of the slug

is shown in Figure 24. When x is zero, the slug is centered in the coil. As the slug moves

out o f the coil in either direction, the inductance decreases until it reaches its minimum

value. This relationship can be represented by the parameterized equation given below.

In Equation I Lo is the maximum inductance value o f the coils, Lmin is the minimum

inductance value o f the coils, and c is a general measure o f how quickly the inductance

changes from Lo to Lmin. In practical terms, the parameters Lo, Lmin, and c can be

chosen so that shape of Equation 1 matches the desired characteristic.

r

L{x) = L min+ [1]

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Lo

 Lmin

Figure 24. Inductance of Coil as a Function of Slug Position.

Two equations can be used to describe the behavior of the solenoid at its ports. The

general form o f these equations is given below.

/ = i(A, x) [2]

F = F (A ,x) [3]

For a linear inductance model Equation 2 becomes

i = k t L(x) [4]

For a more complete discussion of the behavior o f a solenoid device, see Karnopp, et. al.

(1991), pp. 284-289.

Using the information above, the Parameter form for the solenoid Template can

be completed as shown in Figure 25. On the right the constraints that can be applied to

the set o f parameters is shown. If the "Fixed" option was checked, then the parameter

equations would all be considered constants, i.e., the user could not edit them. This is not

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

true in the current case. On the left the parameters used in Equation 1, with default

values, are specified.

Default Param eters
Lo = 0.004
Lmin = 0.002
c - 0.004

pC onstraints on S e t-

j G Fixed

Add j j Edit j j D elete |

< B ack | Next > j j C ancel j

Figure 25. Solenoid Template: Default Parameters.

Each parameter has a set o f properties. The form for the parameter Lo is shown

in Figure 26. The parameter is defined and given a default value in the top line o f the

form. A Parameter can be specified using a constant value, like shown in the figure, or as

an equation made up of constants and previously defined parameters. A list of the

parameters that have been previously defined is listed here for quick reference. Note,

however, that Parameters cannot make use of the time variable and must be explicitly

computable; i.e., algebraic loops among Parameters is not allowed.

The Parameter Properties form allows for a definition to be associated with the

Parameter that will be used to assist the user in specifying its value. Two types of

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

constraints can be applied to an individual parameter. If the parameter is to be treated as

a constant, then it is constrained as "fixed". In the current case, there is a constraint that

the parameter must always be defined within a specified range. Similar forms can be

completed for the other two parameters.

I Default Param eter !
; |Lo = 0.004 !
i Description:

; llnductance value when the slug is in completely in the coil. i j

□ Fixed S?j Value Limits j
Min: |o.QQ2 |Max: Jo.QI

J
Available Variables: J
c
Lmin

OK | | Cancel j

Figure 26. Solenoid Template: Defining Default Parameter.

After the Parameter properties have been specified, a set o f Equations can be

defined. Figure 27 shows the form with the default equations specified for the solenoid

Template. A list o f constraints that may be associated with the Equations as a set is listed

on the right-hand side o f the screen. The meaning of these constraints is described

below:

Fixed - None o f the default equations can be edited by the user.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Algebraic - The equations can only be defined using algebraic operators. Specifically,

the integral and derivative operators cannot be used.

No Use o f Time Variable - None o f the equations can make explicit use o f the time

variable.

m

Default Equations '-C onstra in ts on S e t------------------

lam bdeCoil - lrrtegral(vCail.O)
dSlug - Integral(VSIug.0)
L - Lmin - (Lo-Lmin)/p
dL_dSlug - -2*(dSlug/c)lLo-LMin)/(l ♦(dSlug/c)“2)"-2
■Coil - lam bdaCoil/L
FSlug = HambdaCoir2*dL_dSlug/(2*L~2)

; ! □ F a e d
: i
\ | C i Linear

| G No U se of Time Variable

\

i Add | | Edit | ; D e le te]

< 0 a c k | Mext > | j Cancel]

Figure 27. Solenoid Template: Default Equations.

On the left-hand side o f the form are listed the default Equations that have been

defined as part o f the Solenoid Template. The first two Equations are automatically

defined and cannot be edited or deleted at this point. This result is a consequence o f

choosing the coil and slug Ports with state variables as discussed in Section 3.3.1.4. The

other four Equations are defined and modified using the "Add" and "Edit" buttons.

Each Equation has a set o f properties. Figure 28 shows the properties for the

default Equation that defines the Force at the slug Port. As was previously discussed, this

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

equation has a fixed form. Selecting two Constraints specifies this behavior. First, the

"Edit Right-Hand Side Only" constraint is chosen. This constraint indicates that the

FSlug variable must always appear on the left-hand side o f the equation. The second

constraint restricts this equation to only be composed o f the variables listed. Similar

forms can be completed for each o f the other Equation shown in Figure 27.

f >♦ * f 1 n * • f i } u m M 1 1 n f r i i p • • r t n *

Default Equation:

Default Force equation

□ Fixed

Wi Edit Right-Hand Side Only

□ Restrict to Linear

O Restrict to Algebraic

O No Explicit U se of Time Variable

i ok; j

0 Restrict S et of
Available Variables:

|FSIug=-lambdaCoir2*dL_dSlug/(2*L',2)

Description:

Lmin. _

Figure 28. Solenoid Template: Slug Force Equation.

3.3.1.6 Properties Summary

After completing the above forms, the solenoid Template definition is complete.

At this point a summary o f the properties that were specified in the previous forms is

given, as shown in Figure 29. After pressing the Finish button, the name o f the new

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Template will appear on the list o f Components in the main MB window and be available

for use. An instance o f the Solenoid will appear as shown in Figure 30.

iW B K * 1

New Tem plate Properties:

Name: Solenoid.
Parent Tem plate: Power.
Com ponent T ype: Core.
D isplay Icon T ype: Bitmap: File: Solenoid.BMP.
Default Label: Soienoid.
Keywords: Core Pow er Conserving Transducer

Constraints on Signal Ports:
Signal Ports In: Fixed. 0
Signal Ports O ut Fixed. 0

Constraints on Pow er Ports:
— - ____ _3

< B ack 1" Finish "j 1 Cancel]

Figure 29. Solenoid Template: Summary Page.

$
Coil

Figure 30. An Instance of the Solenoid Template Icon.

3.3.2 Deriving a New Template From an Existing Template

As can be noted by working through the previous example, there are many

questions that need to be addressed when creating a new Template. Although using a set

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

of forms simplifies the process, an additional simplification can be achieved by

exploiting the fact that the constraints specified in a Template's parent are inherited.

In recognizing this fact, it is useful to "seed" a Template library with a set of

Template definitions that have selected properties constrained. For example, it can be

useful to define a general "Signal" template that only adds the constraint that there should

be no Power Ports. Once this is done, then the Signal Template can be used as a parent

when generating a set o f block diagram Templates. Then, when creating a new Template

based on the Signal Template, the decision on how many Power Ports the new Template

should have is already made.

The feature o f inheriting constraints from a parent Template can also be useful

when two similar templates are to be specified. As an example, consider a Template that

defines a field-controlled DC Motor that allows for non-linear mechanical resistance.

Such a Template might be defined with three Ports: an In Electrical Power Port, for the

motor armature, an Out Rotational Power Port, for the motor shaft, and a Signal Port, for

the field current. This information is represented in Figure 31. The default equations that

might be associated with this Component Template, along with the constraints for editing

them, are listed in Table 1.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

sUif

Figure 31. A Field-Controlled, Non-Linear, DC Motor Icon.

Table 2. A Set of Equations for a Field Controlled DC Motor.

Equations Constraints
vArm — vL + vR + vM Fixed
TShaft = TM - TJ - TR Fixed
idot = der (iArm) Fixed
wdot = der(wShaft) Fixed
Km km* if Restricted Vars:

Km, km, if
Edit RHS

vL = L*idot FixedvR = Re*iArm Fixed
vM = Km*wShaft Fixed
TM = Km* iArm Fixed
TJ = J*wdot Fixed
TR Rm*wShaft Restricted Vars:

TR, Rm, wShaft
Edit RHS

Defining such a Template takes care, planning, and time. The result is a new

model type that can be instantiated with relatively little effort. The Template is also

flexible in that it not only allows for specification of some model parameters, but it also

allows for modification of the mechanical resistance equation while ensuring that this

function has the correct form.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The initial Template design effort can be further exploited if a model o f a

Permanent-Magnet DC Motor with all linear equations is to be defined, as shown in

Figure 32. In this case, the previous Template definition can be used as a Parent

Template. This decision would greatly reduce the effort required to define a new

Template. Only a few additional constraints need to be added, namely that the Signal

Port is not needed, the Km value is a constant, and the resistance equation is Fixed to a

linear form.

Arm
- b

Figure 32. Permanent Magnet DC Motor Icon.

3.3.3 Editing Existing Templates

New model types based on a Template definition are intended to be a robust tool

for assisting those who later create instances o f the Template for a particular modeling

purpose. The task o f creating a Template that is precisely defined and has the desired

characteristics can be an iterative process. A typical process would be to specify the

properties o f a new Template, create an instance of the Template, "test" if the behavior is

as expected, and, where needed, modify the properties o f the Template. This process

may be completed many times until the desired Template design is achieved.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

It is obvious that the modeling environment should provide tools for editing the

properties o f an existing Template. In MB, this task is easily accomplished by first

selecting the Template that is to be modified. Then, selecting the Edit menu command

"Edit Template" allows the user to review the set o f forms that were filled out when the

Template was initially completed, and to make changes where desired.

Although the benefits o f editing an existing Template are obvious, there are some

dangers in using this feature that could potentially cause problems and confusion. One

issue involves the concept o f inheriting constraints from a parent Template. If a

Template that is being edited specifies a different Parent than originally chosen, then

some of the current properties of the Template could possibly violate constraints set by

the new Parent. For example, consider a Template that specifies one Signal In Port.

Upon editing this Template, suppose a new parent was selected that specified zero Signal

Ports. At this point, there would be a conflict between the current Template definition

and its parent Template's constraints. A similar situation could arise if the Template

being edited has been used as a Parent itself. Changes in a parent Template could create

conflicts with existing children Templates.

To address the issue of the potential for conflict between the parent and

Templates, the environment has been given two restrictions. First, a Template's parent

can not be changed during the editing process. Second, a Template that has been used as

a parent Template cannot be edited at all.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Another similar issue involves the relationship between a Template and any

instances that have been defined. Adding a constraint to an existing Template when

editing it could create a situation where a pre-existing instance has properties that violate

constraints specified by the Template. At this point in time, a strategy for automatically

dealing with this potential conflict has not been defined and warrants additional effort. In

the mean time, knowledge o f this issue can serve as a guide for the editing of Templates.

3.4 Library Browsing Tools

To address the problems o f searching through a large list o f Templates in a library

three different organization schemes were developed: by Keyword, by Constraint, and by

Generation History. These ideas were discussed previously in Section 2.3.4. In the next

three sections the implementation o f these ideas in the MB environment is discussed.

3.4.1 Keywords Filters

Associated with each Template defined in the MB environment is a list of

keywords. In the main interface o f the MB environment (see Figure 12) the set o f all

Components known to the system is displayed in a scrollable list, alphabetically ordered.

To facilitate searching through this list, the MB environment provides a feature for

"filtering" the list o f Components that are displayed by a set o f keywords. Beneath the

list o f Components is a selectable list o f all the keywords that have been associated with

all o f the Templates defined in the system. Initially, none o f the keywords are selected,

which indicates that the entire list should be displayed. A set o f one or more keywords

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

can be selected in this list to become the current "Filter". When an "Update" button is

pressed the system examines the keywords associated with each Template and displays

only those that match the set o f keywords in the filter. An example of this feature is

shown in Figure 33. The keyword filter is "Signal". All o f the Templates that have this

keyword associated with it are displayed in the list above.

Components:
3 Distributor
U Function
3 Gain
U Integrator
Q Signal
3 Sink
U Source
D Sum

Keyword Filters: : Update |
j Power Conserving i d
Rotation

{Source
{Transducer______
Display By:
Keyword Filters

Figure 33. Filtering Templates by Keywords.

3.4.2 Constraint Filters

As was pointed out in the previous chapter, one limitation to using keywords as a

searching device is that there is no control over what keyword gets associated with a

Template. An additional search method proposed was to use Constraints instead of

Keywords as the searching tool. This option was implemented in the MB environment in

the following way. For each Constraint that is associated with a Template, a "Constraint

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

String" is generated. The Constraint String is a brief text description o f the Constraint.

This way, Constraint Strings can be used as a search tool in a fashion that is directly

analogous to the way that Keywords are used.

One advantage to this idea is that the strings that represent the Constraints

associated with a Template are not arbitrarily chosen; they are automatically assigned.

This way there is always a one-to-one correlation between a Constraint String and the

actual Constraint associated with it. Also, the Constraint String is always guaranteed to

represent an actual characteristic of the Component.

Using Constraint Strings as a filter is illustrated in Figure 34. The Constraint

string used was "No Power Ports". The result o f this filtering produces the same list of

Components was found with the previous Keyword filtering search. However, this time

it is certain that every Component displayed can never have a Power Port. The same

statement cannot be made in the previous case.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Components:
3 Distributor
H Function

Gatin
U Integrator
Q Signal
•] Sink
^ Source
(D Sum

Constraint Rlters

No Signal Ports
Subsystem
Variable Power I
Variable Power (
Display By:_____
^Constraint Rlters

Figure 34. Filtering Templates by Constraints.

3.4.3 Generation History Display

During the Template creation process, a Parent Template must always be chosen.

Although it is possible to derive each Template in the system directly from the General

Multiport Template, as was previously discussed, it can be helpful to use a thoughtfully

chosen Parent. This process naturally leads to a tree-based ordering o f templates. This

feature is exploited in the MB environment by allowing for the Templates to be displayed

based on their parent-child relationships.

Figure 35 shows a particular parent-child ordering o f a set o f Templates.

Templates that have been used as parent Templates but do not currently have their

children displayed on the screen have a box with a plus sign next to them. Double

79

Update I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

clicking on the plus sign causes the list o f the Template's children to be displayed and for

the plus sign to be changed to a minus sign.

Components:
a Q Core

-O Power
e-fcl Capacitance

k [c] C
f [c] Ce

1 [c] Ce'
t [c] Ch
f - [c] Cr
4 -[c] Ct

*-f®1 Common Effort
Common Flow

* Gyrator
: * 0 Inertia
; * 0 Resistance

 Q Solenoid
| * -HI Source of Effort

*••13 Source of Row
*-1tf] Transformer

* O Signal
4 'jp Subsystem

Figure 35. Template Generation History Display.

Display By:
jGeneration History

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4
CONTROLLED ACCESS

4.1 Introduction

In the previous two chapters, issues related to design of a modeling environment

that supports mechatronic systems modeling and methods for organizing and searching

the contents o f a model library were addressed. This chapter discusses the third major

topic addressed by this research, the issue o f controlling the access to internal model

details. Such considerations arise when two companies must share model information to

accomplish a system design. Some model information may be proprietary to one of the

companies. This situation is becoming more common as larger corporations outsource

component designs. This situation may also be o f concern in an educational setting

where a course instructor, a teaching assistant, and students all use the information in a

model file. However, persons in each o f these groups should not necessarily have the

same ability to view and modify the contents o f the model.

A simple solution commonly used to protect information is to prevent access to

the entire contents o f a component model. In this case, use o f such a model is greatly

restricted, with access often limited to specifying parameter values and port connections.

Such an approach, while protecting the interests o f the model provider, can be frustrating

to practicing engineers who use the model. Models may be difficult to use correctly due

to a lack o f understanding of model details that are inaccessible. If some changes become

necessary due to design changes, the model provider must be employed to change the

model.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In this chapter a concept, design, and implementation for improving the way

models are shared is presented. The goal is to provide a facility that permits the owner of

a model to control access to various model details, according to the user classification.

Such a feature allows for varying levels of security regarding both reading model details

and modifying them. The ideas presented here combine the General Multiport modeling

data structure presented in Section 2.2, the need for sharing information among different

groups, and the desire to control access to information. While these concepts have been

exploited in different venues, they have not been combined for effective use in a

mechatronic systems modeling environment.

This chapter is organized as follows. Section 4.2 presents design properties of a

modeling environment that supports the control o f access to various model properties.

An implementation based on this design is discussed in Section 4.3. The usefulness of

the design is illustrated by the presentation o f two examples in Section 4.4.

4.2 Design of a Controlled Access Environment

The MB modeling environment that was presented in the previous chapter serves

as a base implementation environment for tools to support the control o f access to

properties o f a model. In addition to the data structures already introduced, one

additional data structure must also be defined: a M odel File. When a model is built, a

user defines the properties of a set of General Multiports and connects their Ports. The

set o f connected Multiports is stored in a Model File. A Model File is generally stored on

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

a permanent medium, such as a hard drive or disk. In the current discussion on sharing o f

model libraries, the Model File is considered the fundamental shared object. Sharing is

achieved by copying a Model File using standard operating system facilities.

4.2.1 Access-Controllable Attributes

As was previously observed, it can become useful to prevent access to the details

o f a model for various reasons. A common method for accomplishing this objective is to

control the access to a model by restricting access to a Model File. Tools provided with

some operating systems, such as Windows NT or Unix, can be employed for this

purpose. Under these circumstances there are three general possibilities for controlling

access. In the first case, there are no restrictions for opening and modifying the contents

o f a model file. In the second case, the contents can be examined or "Read", but

modifications are not allowed. In the third case, the contents can not be accessed at all.

While this feature can be useful in controlling how and when a model is read and

modified, the application o f access settings are limited to a Model File as a whole. A

more sophisticated approach would allow for individually controlling the access to

various aspects o f a model. Instead o f simply "locking up" an entire model, only critical

parts o f the model are protected. More flexibility is provided and greater utility can be

extracted from a model.

Once the concept o f controlling the access to individual model attributes is

accepted, it then becomes necessary to identify various model attributes for which it may

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

be beneficial to establish access control. Such model attributes are referred to as access

controllable. In this design three access-controllable objects were identified in order to

demonstrate the usefulness o f the ideas. Table 3 lists these objects and their possible

access values. For each access-controllable object, exactly one o f the three access setting

values is applicable at any given time.

Table 3. Three Access-Controllable Objects and Their Possible Access Values.

Object Access Va ues
Core
Equations None Read Read/

Modify
Subsystem
Contents None Open Open/

Modify

Model File None Load Load/
Save

For Core Equations, an access value o f "None" indicates that a Core Component's

Equations can neither be read nor modified. "Read" indicates that equations can be

studied, but not modified. "Read/Modify" indicates that there are no access restrictions

on how equations can be modified.

For Subsystem Contents, an access value of "None" indicates that the Contents of

a Subsystem Component cannot be viewed or modified. "Open" indicates that a

Subsystem can be opened and its contents examined, but modifications, such as adding

and deleting Components are not allowed. "Open/Modify" indicates that there are no

restrictions on examining or modifying the contents of a Subsystem.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

For a Model File, an access value o f "None" indicates that the contents o f a Model

File will not be loaded when the file is opened. "Load" indicates that the file contents can

be loaded, but changes cannot be saved. "Load/Save" indicates that there are no

restrictions on loading or saving the contents o f a Model File.

4.2.2 Users and Groups

To give further flexibility to controlling access to the properties o f a model,

additional data structures are used which are patterned after the UNIX file access control

(Stallings, 1998). First, a Current User is defined. The Current User is a system

parameter used to identify the person currently working in the modeling environment.

The value o f the Current User Variable can be changed at any time, which is equivalent

to "logging off' and "logging on".

Next, as shown in Figure 36, each Model File contains a set of Groups. In this

initial design four groups are defined: Owner, Group 1, Group 2, and World. Although

the number o f groups is currently fixed, in principle the number of groups is variable.

Associated with each o f the first three groups is a unique list o f Users-, i.e., each User is a

member of exactly one group.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Model File

Owner
Group

World
Group

Group 1 Group 2

Owner
User 1

Group 2
User 1

Group 1
User 1

Figure 36. Organization of Groups and Users.

Using this classification scheme, the Current User is always identified as

belonging to exactly one Group. If the Current User is among the Users on the Owner

list, then the Current User is considered an Owner. If the Current User is among the

Users on the Group 1 list, then the Current User is consider a Group 1 User. If the

Current User is not contained on any list, then the Current User is considered a World

User.

The functional purpose of the data structure above is to classify the Current User

as a member o f one of the Groups. When a new Model File is created, the Current User

is automatically added to the list o f Users o f the Owner Group. The lists associated with

the other Groups are initially empty. When an existing Model File is opened, then the

Current User is identified as an Owner, Group 1, Group 2, or World User.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2.3 Group Access Settings

Each access-controllable object maintains an independent set of access values for

the Group 1, Group 2, and World Groups. For example, a Core Component can specify

that Group I Users can read and modify its Equations, that Group 2 Users can only read

its equations, and that Word Users can neither read nor modify its equations.

Users who are classified as an Owner always have complete access to all data in a

model. In addition, Owners can add and delete Users from any o f the Groups. The sole

exception is that the Current User cannot be removed from the Owner List. (If this

option were available, then it would be possible for a Model to be permanently "locked

up".)

Part of the design philosophy recognizes that a majority o f models built in this

modeling environment will not need to define any type of access control. Therefore any

implementation should incorporate the following principles:

• Setting Controlled Access values is optional.

• Controlled Access features are exposed only if it is desired to set some control values,

or if control values have been previously set and are being enforced.

• The default Controlled Access Values are such that there are no restrictions on any

user.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3 An Implementation of Controlled Access

4.3.1 Current User And Group Members

The access control tools described in Section 4.2 are dependent on the value of

the current user. This value is a system parameter that can be set at any time. Initially,

the current user is automatically defined as "Anonymous". If controlling the access to

model properties is not an issue, then this value need never be changed. However, if the

access control tools are desired, the first step should be to specify a new Current User.

This task is accomplished by selecting the Specify Current User command from the Edit

Menu. Selecting this command produces the dialog shown in Figure 37.

S p u i ; i f y Current U s e r in
Current U ser
[Anonymous

WMW M V .V .'.W .W .m W W

OK I 1 Cancel

Figure 37. Specifying the Current User.

Recall that each Model File maintains its own lists of known users and classifies

them in one o f the four Groups: Owner, Group 1, Group 2, and World. The Current User

is always classified as belonging to exactly one o f these groups. If the Current User is a

member of the Owner Group, then that user has the ability to add and remove Users from

the first three groups. A list o f Users is not maintained for the World Group. That group

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

is used as a default classification for a User who is not a member o f any o f the other three

groups.

Figure 38 shows the dialog used for specifying the members o f the Owner, Group

1, and Group 2 Groups. This dialog can only be accessed if the Current User is a member

o f the Owner Group. The Group for which the Users are to be specified is selected from

the list on the top of the dialog. Figure 38 indicates that the list o f Users for Group 1 is

currently being specified. The list o f Users o f the currently selected group appears in the

bottom half o f the display. Figure 38 also indicates that three Users currently belong to

Group 1. An Owner can freely edit the list o f Users o f any Group, with one exception:

the Current User cannot be removed from the Owner list.

ID

| Group

| Group 1i l l
Owner I
1 i
Group 2 | j

U sers:
U ser l
U ser 2
U ser 3

■5>

I OK "| P Cancel™]

Figure 38. Interface for Editing Group Members.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3.2 Specifying Group Access Settings

At any time during the process o f building a model, an Owner User can set the

access values for any existing access-controllable object. Figure 39 shows the dialog for

defining access settings for a Core Component's Equations. Right-mouse clicking on an

existing Core Component accesses this dialog. Right clicking on an object in the MB

environment causes a list o f menu options that are specific to that object to appear in a

"context menu". If the Current User is an Owner, then the context menu command

"Access Settings..." can be selected.

On the left-hand side o f the dialog the Group for which Access Values are to be

set is selected. On the right-hand side o f the dialog the access values for the currently

selected Group are specified. The current options shown in Figure 39 indicate that any

user belonging to Group 1 only has the ability to view the Equations associated with the

currently selected Core Component. Similar dialogs are available for specifying the

access settings for a Subsystem Component and a Model File.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C o r e E q u a t i o n A c c e s s Set t ing ' 3

Group:

OK

Access Value

Group 1 a
Owner

Group 2
World

Read f*>§

Read / Modify

None

Figure 39. Specifying Access Settings.

4.3.3 Enforcement of Controlled Access

When a model has been created with various access-control settings, enforcement

is then left to the MB environment. Enforcement is accomplished by determining the

access value for the Current User to each of the Access-Controllable objects, as described

below.

Core Component's Equations

• None - Upon attempting to access the equations, a Dialog similar to the one shown in

Figure 40 appears. This dialog is the interface used for editing Equations. However,

notice that instead o f displaying the list of Equations associated with the Component,

a set o f asterisks appears. Also, the buttons on the right-hand side o f the screen which

normally support the adding, editing, and deleting of equations are disabled.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Read - The actual Equations are displayed in the dialog o f Figure 40. The Add, Edit,

and Delete buttons are disabled.

• Read/Modify - The actual Equations are displayed in the dialog o f Figure 40 and the

Add, Edit, and Delete buttons are Enabled.

E q u a t i o n s
| Definition:

I

i$

5

D escription:

OK C ancel

Figure 40. Restricted Access to Equations.

Subsystem Component Contents

• None - When an attempt is made to open a Subsystem, a message is displayed

indicating that the Current user does not have permission to open the subsystem.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Open - The contents o f the Subsystem can be examined, but substantive

modifications are not allowed. Some types of restricted modifications are editing

Equations and Adding and Deleting Components, Ports or Connectors.

• Open/Modify - The system behaves as normal, with no restrictions on modifying the

Subsystem's contents.

M odel Files

• None - When a Model File is opened and it is discovered that the Current User

doesn't have the proper access permissions, then a message is displayed indicating

this fact. The contents o f the file are not loaded.

• Load - There are no restrictions on modifying the contents o f the Model file, but it is

not possible to save any changes that were made. Upon attempting to save a Model

File, a message is displayed indicating this fact.

• Load/Save - The system behaves as normal, with no restrictions on loading or saving

Model Files.

4.4 Two Illustrative Examples

The utility o f the features described in the previous section can be illustrated by

considering two scenarios where the use o f the tools would be of benefit. First, consider

a company that has been commissioned to design a model o f a mechatronic system. The

model is to be placed in a feedback control system. The commissioning company desires

to use the model and test various control strategies using various inputs. Under these

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

conditions, the commissioned company might develop the model shown in Figure 41. In

this figure, the Duty_CycIe and Sum Junction are Core Components and the Control,

Plant and Measurement are Subsystem Components.

□ IXUM odell

Duty_Cycle Control Plant

M easurem ent

Figure 41. A Feedback Control System

Consider four groups o f individuals that may have access to this model file and

the way they would use the modeling environment. First is the company that is

commissioned to create the model. When the person who initiates the project creates a

new Model file, that person's user name is automatically added to the Owner list. Then,

if the model development was a team project, that person would add the user names of

the other people on the team to the Owner group. After a working model was completed,

it would be the responsibility o f one of the Owners to decide which parts of the model

should be accessible members o f Group I, Group 2, and World.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Suppose that the development team decides that an in-house team should be

formed to validate the model before sending it off to the customer. They further decide

that they don't want any changes to be made to the plant model by the development team,

but want them to be able to examine it. In this case, the user names o f the members o f

the validation team would be placed on the Group 1 list and the access value for the plant

Subsystem set to "Open". When the validation team uses the model, the find that they

can look at the contents o f the plant model, but are not allowed to modify any significant

properties.

The development team then decides to specify one user name for their customer

and puts that name on the Group 2 list and sets access to the plant Subsystem to "None",

allowing the customer the ability to use the plant model, but not to have access to its

details. Finally, the development team decides that anyone else who might gain access to

the model should have no access to the file at all. The World group access value is

therefore set to "none".

As a second scenario, consider an educational environment where the modeling

environment is to be exploited as a "virtual laboratory", in a way similar to the scenario

described by Rosenberg (1991). In this situation students are given a description o f a

mechatronic system and asked to create a model o f the system. To make this learning

experience as valuable to the students as possible, it would be particularly useful if the

students were asked to "validate" the models they generate by comparing their numerical

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

results with experimental results. Unfortunately, as is often the case, the lack of

resources often make this goal unattainable.

However, using the tools o f controlled access, a professor, classified as the model

owner, creates a "true" model o f the system that captures the response o f the system with

the desired level o f fidelity. The instructor adds a User Name for the teaching assistant to

the course to the Group 1 list. The access values for Group I are set such that the TA has

complete access to view the model contents, but no access to change model properties.

The list of students in the class is then added to the list o f member o f Group 2. The

access permission settings for Group 2 would then be specified to give the students

appropriate access to the model details, as determined by the instructor. Students would

then be able to construct their models, design "experiments" on the instructor's model,

and "validate" their results by comparing them to response of the instructor's model.

Finally, the instructor decides to post the model file on the course web page for easy

student access. Not wanting to discourage curiosity by others not participating in the

class, but not wanting to give free access to the material meant for students, the instructor

sets the same access values for World as for Group 2. In addition, the Model File access

value for the World members is set to "Load" so that member of the World group cannot

run experiments based on different model settings.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5
CONCLUSIONS

5.1 Summary of Contributions

The completed research described in this document represents a unique and

significant contribution to the area o f mechatronic systems modeling. The principal

objective o f designing data structures, formulating new concepts and organizing existing

information for the use in mechatronic systems modeling has been accomplished.

Effective use o f the ideas formulated in this document help to simplify the modeling

process, decrease the effort required in generating new mechatronic modeling

components and systems, and make it possible to control access to a finer level o f model

details. These benefits support both industrial needs, where design cycle times are a

critical factor, and academic needs, where simplified designs allow students to focus on

relevant modeling issues, not on implementation details.

A specific discussion of the major contributions o f this work is presented in the

next four sections. Section 5.1.1 addresses contributions that were made in relation to

Template design. Library tools that were designed and implemented are listed in Section

5.1.2. An implementation environment that was created as part o f this work is covered in

Section 5.1.3. Section 5.1.4 presents the concepts and organization of ideas concerning

controlled access to a mechatronic system's properties.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.1.1 Template Design

In CHAPTER 2 the importance o f a relatively new modeling paradigm, the

specification o f User-Defined Model Types (UDMTs), was discussed. Currently there

are several modeling environments that support this feature. As part o f this work a new

data structure, called a Template, was defined. A Template describes the properties o f a

UDMT. The Template design presented here represents a new way o f organizing

information about mechatronic system models. The organization provides a different

perspective for thinking about the way in which UDMT are defined and their role in

creating models o f mechatronic systems. The Template definition includes a modeling

structure, called the General Multiport, a set o f constraints that prescribe desired behavior

for instances o f UDMTs, and a set o f default properties. The explicit use o f constraints to

prescribe the way in which instances o f UDMTs can be modified and classified is a new

and unique.

A definition o f the General Multiport modeling structure was also part of this

work. The General Multiport is specifically designed to support models o f mechatronic

systems and components, hierarchical design, and model reuse. The properties of a

General Multiport describe the range o f properties o f possible models that can be built.

The fundamental definition presented is an extension o f previous work. The definition is

sufficiently general to allow for definition o f a large class o f practical engineering

models.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Template defines a unique way for organizing the properties o f a UDMT and

provides ways to specify functionality in a modeling environment that was not previously

possible. Specifically, the Template definition makes it possible to

(1) bound the allowable configuration o f a model's properties,

(2) derive new Templates based on existing Templates, and

(3) structure and classify a set o f Templates in useful and meaningful ways.

The usefulness o f the these features was demonstrated by considering possible

ways that they could be exploited in a modeling environment for mechatronic systems.

The first feature makes it possible to ensure that the way model instances are used is

consistent with the Template definition. The second feature provides a means to simplify

greatly the process o f defining a new Template and gives an improved method for

providing a natural structure to a set of Templates in a library. The third feature aids in

the process o f browsing the contents o f a model library with a large number of model

types. This benefit is discussed in the next section.

5.1.2 Library Tools

Tools for browsing the contents o f a library o f model types were designed and

demonstrated in this work. The Template data structure made this design possible. The

way in which these tools are designed and operate has not been previously exploited.

Three methods were presented for searching the contents o f a library o f modeling

templates.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• By Keyword - One of the attributes o f a General Multiport definition is a set of

keywords. MB provides a mechanism for searching through a list o f Templates and

finding ones with matching keywords.

• By Constraint - The constraints that are specified in a Template help to define the

way in which a model instance behaves. MB provides tools for searching through a

list o f Templates according to constraints. This tool can be particularly useful since,

unlike keywords, the constraint description is guaranteed to relate directly to the

actual Template definition.

• By Generation History - A new Template is created by using an existing Template as

a parent. The new Template inherits the constraints specified by the parent. This

parent-child relationship presents a natural a tree-structured ordering o f a set of

Templates, and it can be useful when searching the contents of a Template Library.

5.1.3 Environment Implementation

The efficacy of the ideas expressed regarding Template design and Library Tools

were demonstrated by implementing a mechatronic system modeling environment, called

the Model Builder (MB), that is based on Template concepts. In this environment the

only pre-defined modeling type is the General Multiport, from which a set o f User-

Defined Modeling Types can be generated. This feature makes it possible for the

environment to be flexible and customizable, suiting the specific needs o f the user. It

also provides the opportunity to exploit the environment as a teaching tool. Requiring

students to thoughtfully create a new model type for a specific design would expose them

to a broader range o f modeling experiences.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Another benefit o f this implementation is that it serves as a framework for future

research efforts. The investment that is required to create a user-friendly, graphically

driven, general-purpose environment for mechatronic systems modeling is significant.

Much of this work does not involve research-specific issues and can be time consuming

and tedious. Fortunately, now that a fundamental environment exists, it can be exploited

and extended in new areas related to mechatronic systems modeling.

5.1.4 Controlled Access

A need for more sophisticated tools for limiting the ways in which models of

mechatronic systems are viewed and modified was identified. In response to this need

the concept of controlling the access to various model properties was proposed. This

design represents a unique confluence o f three areas.

• Data Structures o f Mechatronic System Models - The attributes of the General

Multiport were used as a basis for specifying the various access properties.

• Information Sharing - The need for sharing files between individuals jointly working

on a modeling effort and the trend to make models available in a public setting

motivated the concept o f information sharing.

• Control o f Access to Data - Well-understood concepts associated with protecting data

files stored on an operating system were used as the basis for controlling access to

data.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The ideas presented make it possible for a person who accesses a model to be

classified into one o f several pre-defined groups. According to the specification of the

model owner, each group can have a unique combination o f access permissions to various

aspects o f a model. Permissions range from unfettered access, to read-only access, to no

access.

The concept o f controlled access was demonstrated by implementing a design o f

these features in the MB modeling environment. Controlled access was implemented

after MB was completed according to the goals o f Template design. The implementation

effort o f controlled access was relatively simple. This result supports the assertion that

the MB environment can serve as a framework for future research.

5.2 Areas for Future Research

This section lists several areas that could be further investigated. The suggestions

are divided into four groups. Section 5.2.1 presents ideas for tools related to the design

of a Template. Library related suggestions are listed in 5.2.2. Issues relevant to the

implementation environment are covered in Section 5.2.3. Topics regarding controlled

access are given in 5.2.4.

5.2.1 Template Design

1) Enhanced General Multiport definition - The design o f the General Multiport

presented here is useful for modeling a large class o f physical systems. However,

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

there are other modeling structures that have been explored by others that should be

incorporated in this design. Some o f these areas are discussed below.

a) Discrete variables - Many mechatronic systems designs are hybrid in nature, in

the sense that they combine continuous and discrete variables (Elmqvist, et. al,

1993). A system that uses a digital controller is a typical example. The General

Multiport definition should support hybrid systems.

b) Discrete events - A related topic to discrete variables is discrete events, such as

the opening or closing o f an electrical switch. Methods for handing discrete

events have been proposed, (Kamopp, 1988; Lorenz, 1993), but further research

in this general area is needed. However, ways to incorporate discrete events in

the General Multiport definition should be explored.

c) Vector Ports - It can be helpful to represent a group of Ports as a data single

structure. Many issues regarding this concept have been previously explored

(Breedveld, 1985). This feature can greatly simplify both the way a model is

displayed and the way in which the model is conceptualized.

2) Improved parent-child relationships for Templates - In the current implementation

environment, when a child Template is derived from a parent, the inherited properties

are passed on by essentially making a copy o f the inherited attributes and passing

them on to the child. This scheme leads to a duplication of data. A more

sophisticated implementation would exploit the relationship information as a

mechanism o f inheritance; e.g., a child Template could refer to its parent to determine

some o f its properties.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3) Additional constraint definitions - In the current implementation, a set of constraints

was defined that prescribe properties such as the number o f Ports, the direction of the

Ports, the form o f the equations as a set, and the form o f individual equations. This

set o f constraints can be used to define a set o f model types. However, it would be

beneficial to investigate additional way in which to constrain the properties of a

General Multiport, giving rise to more specialized behavior.

4) Additional types o f Templates - The Template ideas expressed in this dissertation

were only discussed in relation to a General Multiport. However, the notion of a

Template description for any modeling object is equally applicable. For example, it

is possible to define Port Templates and Equation Templates. In fact, this idea was

investigated and used in the MB modeling environment to some extent; a partial

definition o f a Port Template was defined and exploited. However, a more thorough

investigation is required.

5) Educational benefits - The concept of using constraints to prescribe a desired

behavior o f a very general modeling construct is unique. However, it is a useful way

to organize one's thinking about modeling in general. The potential benefits of

presenting Template ideas in a learning environment should be more carefully

explored.

5.2.2 Library Tools

1) Enhanced logical combination of filters - In the current implementation, a set of

filters is chosen. For a Component in the library to match the filter, it must have all

o f the keywords listed in the filter. This result can be thought of the logical "AND"

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

combination o f the items on the filter. Allowing for different logical combinations o f

the filter items would make the search tools more flexible. For example, it would be

useful to be able to specify a search for any Component that matches the keyword

"Two Ports" OR "Transducer".

2) Keyword management - Currently, when a new template is created, a set o f keywords

is associated with it. The keywords are used later as a searching tool to assist a user

in finding a useful model. However, the searching benefit can be degraded if the

keywords used to describe a given model are not carefully chosen. For example,

suppose two modeling components that were defined were energy conserving. If one

model was given the keyword "Conservative" and the other was given the keyword

"Energy Conserving", searching efforts could be hampered.

One way to deal with this issue is to have a database o f keywords. When a user must

decide upon the set o f keywords to associate with a model, the keywords must be

chosen from the database. If this scheme is used, then there must also be tools for

managing the contents o f the keyword database. These ideas require additional

thinking and effort and would be o f great value in a modeling environment.

3) Automated tools for sharing templates - In the current implementation o f the MB

environment, automated modeling tools have been defined for creating and editing

Templates. However, after a Template is created in one environment, there are no

automated tools for exporting the template for use in another system. This area

should be investigated to support this facility.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4) Browsing model instances - The library browsing tools discussed in this document

apply to a library of Templates. A useful feature would extend this ability to browse

the contents o f model instances.

5.2.3 Implementation Environment

1) Improved visualization tools - Additional insight into a system model can be gained

by using various visualization techniques, such as those discussed by Ermer (1994).

Some possible extensions in the MB environment include 3-dimensional model

representations and power flow animations o f simulation results.

2) Interface with other environments - The MB modeling environment provides tools for

a subset o f Computer Aided Engineering. It would be useful to support dynamic

interfacing with other major types o f CAE tools, such as finite element modeling

tools. In this way the strengths o f both environments can be exploited.

3) Compiled simulation code - In the current implementation, the equations of the

system are ported to MATLAB as an "M-File" (Mathworks, 1999). While this

approach is functional for smaller problems, it can increase simulation times greatly

when models get larger.

5.2.4 Controlled Access

1) Provide for a finer level o f access control - In this dissertation, the principle o f

controlled access that has been previously applied to files as a whole was extended to

various features o f a multiport model. This extension gives a greater flexibility in

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

specifying how an instance o f model should accessed. Applying access control

concepts to even finer levels o f detail o f a model can extend this basic concept even

further. For example, instead of controlling access to an entire set o f equations

associated with a Component, it might be useful to restrict access to a subset.

2) Controlled Access to Templates - The ideas of controlled access were applied

instances o f models. The benefits o f controlled access could also be exploited by

controlling the access to Templates.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX

IMPLEMENTATION DETAILS

The Model Builder Environment that was developed as part o f this research effort

consists o f over 55,000 lines of code, expressed in over 100 files and nearly 95 classes.

Due to the scope o f this project, it was not deemed useful to present a verbatim listing o f

the code text. Instead, this appendix presents an overview o f the implementation and

directions for understanding the code structure. The information presented here, intended

as a guide to assist future development, is given in two major categories. First, the

organization o f the major C++ classes that define the MB environment are presented.

The class diagrams follow the Object Modeling Technique (OMT) described by

Rumbaugh et. al. (1991). Second, the name and general purpose of the major text files

that are used to create the MB environment are given.

Class Structure

The Object Modeling Technique was developed in an attempt to create a standard

for communicating an abstract description o f code structure based on object-oriented

programming paradigms. These ideas are not related to any particular object-oriented

programming language. However, since MB was developed in C++, the OMT notation

will be discussed in terms specific to this language.

Using the OMT, squares represent a C++ class. Lines connecting two classes

indicate a relationship between the classes. The precise nature o f each relationship

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

depends on the classes involved in the relationship. An Annotation at one end of a

relationship line indicates the role that the class plays in the relationship. A circle at one

end of the relationship indicates that multiple class instances may participate in the

relationship. The relationships are generally implemented using object pointers. A

triangle indicates a parent-child relationship exists between two classes. For a more

complete description of the notation used, consult Rumbaugh, et. al. (1991).

An Object Diagram, representing relationships between the major classes in the

Model Builder environment, is shown in Figure 421. A general class for describing

objects that are stored in a model or a graph is the CGraphObject class. This class is an

abstract class that defines data common to objects that might be contained in a model.

There are no direct instantiations o f this class. Four classes are derived from the

CGraphObject class, CComponent, CPort, CConnector, and CLabel. The CComponent

class is further derived into the CCompMacro class, for Macro Components, and the

CCompAtom class for Atom Components. The CCompMacro class stores a list of

pointers to other CGraphObjects. Each CCompMacro may display its objects in a

window created from the CMBView class. The CComponent class is associated with a

CTmpClass, which store Template information for a Component. A parallel structure

exists for Ports, although the Port Template ideas are not fully exploited at this point.

1 The names o f two model properties changed from the time the code was originally generated to the lime

this document was prepared. In the code Subgraph Components are called Macro Components, and Core

Components are called Atom Components. The original names are used in this section.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CM ainFramc CTool

O w ner
/ \ - CAcessGroup

Groups

CTooiSdect CTool ConnectCMBDoc

CToolDelete CToolAdd
CMBView

selection
CGraphObject

children

To
CComponent ^ CPort CConncctor C Label

From

CCompMacro CCompAtom

CTmpComp CTmpPort

Figure 42. The MB Object Diagram.

The CMainFrame class is used to store application specific data, i.e., data that

does not depend on the current model. MB has a Multiple Document Interface (MDI),

meaning that more than one model file can be opened at one time. This structure is

supported by having multiple CMBDoc classes related to the CMainFrame class. Each

CMBDoc stores and manages data specific to a model file. The most important

information stored in the CMBDoc class is a pointer to the "top" CCompMacro. Each

III

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CMBDoc class stores exactly one CCompMacro. The CMainFrame class also stores a

list ofCTmpComp and CTmpPort classes.

A set of tools for operating on the contents of a model are associated with the

CMainFrame class: the abstract class CTool and its derived classes, CToolSelect,

CToolDelete, CToolConnect, and CToolAdd. These classes group tasks for carrying out

actions to manipulate the contents o f a model or graph.

The tools to support Controlled Access are contained in the two classes

CAccessGroup and CAccessSetting. Each instance o f the CMBDoc class stores a set of

pointers to CAccessGroup classes. The CAccessGroup class stores a list o f strings that

represent the users that belong to it. The CAccessSetting stores an access value and a

pointer to a CAccessGroup. This information is used to define restrictions to accessing

the attributes of various other classes. CAccessSetting classes are associated with the

CMBDoc class, to control access to model files, and to the CGraphObject class. Classes

derived from CGraphObject must implement their own functions to support Controlled

Access. The CCompMacro class implements Controlled Access for its contents and the

CCompAtom class implements Controlled Access for its Equations.

File Structure

The above class structure was realized in a set o f C++ class definitions, contained

in text files. The main files used in the MB environment and a brief description o f their

contents is given in this section.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 4. Major Files Used for Creating the MB Environment.

File Contents

MBClasses .h. Headers for most of the classes used in MB.

Components. cpp CGraphObject CComponent, CCompAtom, and
CCompMacro class definitions.

GraphObjects.cpp CPort, CConnector, and CLabel class definitions.

MainFrame.cpp CMainFrame class definition.

MBDoc.cpp CMBDoc class definition.

MBView.cpp CMBView class definition.

Templates.cpp CTmpComp and CTmpPort class definitions.

EditTools.cpp CTool, CToolSelect CTool Connect, and CTooIAdd class
definitions.

Equation.cpp Class definitions for defining and manipulating equations.

Constraint.cpp Class definitions used to specify and evaluate constraints.

Access.cpp CAccessGroup and CAccessSetting class definitions.

PSTmpComp.h Headers for the classes used in the Template
creating/editing wizard.Common.cpp A set o f general purpose, global functions.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

REFERENCES

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

REFERENCES

ANSI, 1966, American National Standard Programming Language FORTRAN, ANSI
X3.9-1966.

Auslander, D.M., 1996, "What is Mechatronics?", IEEE Transactions on Mechatronics,
Vol. 1, No.l, pp. 1-5.

Boeing, 1998, Easy5 User Guide, Boeing Computer Services, Seattle, WA.

Breedveld, P.C., 1985, "Multibond graph elements in physical systems theory", Journal
o f the Franklin Institute, 319(1/2), pp. 1-36.

Bruenese, A.P.J., J.L. Top, J.F. Broenink, and J.M. Akkermans, 1998, ’’Libraries o f
Reusable Models: Theory and Application", Simulation, Vol.71, No.7, pp.7-22.

Bruenese, A.P.J. and Broenink, J.F., 1997, "Modeling Mechatronic Systems Using the
SIDOPS+ Language", International Conference on Bond Graph M odeling and
Simulation, Vol.29, N o.l, pp. 310-306.

Breunese, A.P.J., 1996, Automated Support in Mechatronic Systems Modeling, Ph.D.
Thesis, University o f Twente.

Buur, J., 1992, "Does Mechatronics need a special design attitude?", Mechatronic
Systems Engineering, Vol.l, No.4, pp.293-300.

Byam, Brooks, "Modular Modeling o f Engineering Systems Using Fixed Input-Output
Structure", Ph.D. Dissertation, Department o f Mechanical Engineering, Michigan
State University.

Cellier, F.E. and Elmqvist, H., 1993, "Automated Formula Manipulation Supports
Object-Oriented Continuous System Modeling”, IEEE Control Systems, Vol. 13,
No.2, pp.28-38.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Cellier, F.E., 1992a, "Bond Graphs: The Right Choice for Educating Students in
Modeling Continuous-Time Physical Systems", Simulation, Vol.64, No.3, pp. 154-
159.

Cellier, F.E., 1992b, "Hierarchical Non-Linear Bond Graphs: A Unified Methodology
for Modeling Complex, Physical Systems", Simulation, Vol.58, No.4, pp.230-248.

Cellier, F.E., 1991, Continuous System Modeling, Springer-Verlag.

Comeford, R., August 1994, "Mecha...what?", IEEE Spectrum, pp.46-49.

Controllab Products, 1999, 20-Sim Reference M amtal, Version 3.0, Enschede, The
Netherlands.

Dertouzos, M.L., 1997, "Creating the People's Computer", M IT s Technology Review,
April, pp.20-28.

Dynasim AB, 1999, Dymola - Dynamic Modeling Laboratory, [Online] Available
http://www.dynasim.com/, November 16, 1999.

Elmqvist, H. Cellier, F.E, and Otter, M., 1993), "Object-Oriented Modeling o f Hybrid
Systems", Proceeding European Simulation Symposium, Delft, Netherlands, pp.3 1-
41.

Ermer, G., 1994, "Improving Engineering System Design Through Scientific
Visualization Methods", Ph.D. Thesis, Department o f Mechanical Engineering,
Michigan State University.

Fritchman, B. M. and Hammond, R. A , 1992, "A New Method for Modeling Large
Flexible Structures", Simulation Vol.6l, No.l, pp.53-59.

Gibbs, W. July 1997, "Taking Computers to Task", Scientific American, pp. 82-89.

Hales, M. 1995, "A Design Environment for the Graphical Representation o f Hierarchical
Engineering Models", Master o f Science Thesis, Department o f Mechanical
Engineering, Michigan State University.

IMAGINE, 1996, AMESim and AmeSet Manual, Version 1.5, Roanne France.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.dynasim.com/

www.manaraa.com

Integrated Systems, Inc. 1994, SystemBuild User's Guide Version 4.0, Santa Clara, CA.

ISO, 1998, Information Technology - Programming Languages - C++, ISO/DEC 14882-
1998.

Kamopp, D.C., Margolis, D.L., and Rosenberg, R.C., 1990, System Dynamics: A Unified
Approach, 2nd e d , Wiley Interscience, New York.

Kamopp, D.C., 1988, "General Method for Including Rapidly Switched Devices in
Dynamic System Simulation Models", Transactions o f the Society fo r Computer
Simulation, Vol.2, No.l, pp.155-168.

Lorenz, F., 1993, "Discontinuities In Bond Graphs: What is Required?", Proceedings
1993 International Conference on Bond Graph Modeling, San Diego.

Mackulak, G.T., Cochran, J.K., and Savory, P.A., 1994, "Ascertaining Important Features
for Industrial Simulation Environments", Simulation Vol.63, No.4, pp.211-221.

MathWorks, 1999, MATLAB 5.3 / Simulink 3.0, Natick, Massachusetts.

MathWorks, 1998, "Using Simulink and Stateflow in Automotive Applications",
Simulink-Stateflow Technical Examples, 9521v00 2/98.

Mattson, S.E., H. Elmqvist, and M. Otter, 1998, "Physical system modeling with
Modelica," Control Engineering Practice, Vol.6, pp.501-510.

Modelica, 1999, Modelica: Language Design for Multi-Domain Modeling [Online]
Available http://www.modelica.org/, November 16, 1999.

Otter, M. and Elmqvist, H., 1997, "Energy Flow Modeling o f Mechatronic Systems Via
Object Diagrams", IMACS Symposium on Mathematical M odeling, pp.705-710.

Otter, M. and Cellier, F., 1996, "Software for Modeling and Simulating Control
Systems", The Control Handbook, CRC Press, Boca Raton, FL, pp. 415-428.

OLMECO, 1991, OLMECO: Open Library fo r Models o f mEchatronic Components,
Part I-m, ESPRIT proposal EC 6521, Brussels, Belgium.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.modelica.org/

www.manaraa.com

Pressman, R. S., 1992, Software Engineering: A Practitioner's Approach, McGraw-Hill,
Inc.

Rosenberg, R.C., 1991, "Modeling for the Masses: Simulation as a Soft Lab",
Proceedings ASME Dynamic Systems and Control Division DSC-Vol.36, pp.53-60.

Rosenberg, R., Hales, M., and Minor, M., 1996, “Engineering Icons for Multidisciplinary
Systems”, Proceedings ASME Dynamic Systems and Control Division DSC-Vol.58,
pp.665-672.

Rosencode Associates, Inc., 1995, The ENPORT User's Manual Version 5.4 , Okemos,
MI.

Stallings, W., 1998, Operating Systems: Internals and Design Principles, Prentice Hall,
Upper Saddle River, N.J.

Stein, J. and Rosenberg, R., 1991, "The Art of Physical System Modeling: Can It Be
Taught? A Symposium Retrospective", Proceedings ASME Dynamic Systems and
Control Division DSC-Vol.36, pp. 1-3.

Swanson Analysis Systems, Inc., 1998, ANSYS Engineering Analysis System - User's
Manual, Houstan, PA.

Umez-Eronini, Eronini, 1999, System Dynamics & Control, Brooks/Cole Publishing
Company, Pacific Grove, CA.

van Dijk, J., 1994, On the role o f bond graph causality in modeling mechatronic systems,
Ph.D. thesis, University o f Twente, Netherlands.

Vries, T.J.A. de, 1994, Conceptual Design o f Controlled Electro-Mechanical Systems,
Ph.D. thesis, University o f Twente, Netherlands.

Vries, T.J.A. de, Breedveld, P.C., and Meindertsma, 1993, "Polymorphic Modeling of
Engineering Systems", Proceedings 1993 International Conference on Bond Graph
Modeling, San Diego, pp. 17-22.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

